
Hardware-Based Domain Virtualization for
Intra-Process Isolation of Persistent Memory

Objects
Yuanchao Xu∗, ChenCheng Ye†, Yan Solihin‡, Xipeng Shen∗

∗North Carolina State University
{yxu47, xshen5}@ncsu.edu

†Huazhong University of Science and Technology
yecc@hust.edu.cn

‡University of Central Florida
Yan.Solihin@ucf.edu

Abstract—Persistent memory has appealing properties in serv-
ing as main memory. While file access is protected by system calls,
an attached persistent memory object (PMO) is one load/store
away from accidental (or malicious) reads or writes, which may
arise from use of just one buggy library. The recent progress in
intra-process isolation could potentially protect PMO by enabling
a process to partition sensitive data and code into isolated
components. However, the existing intra-process isolations (e.g.,
Intel MPK) support isolation of only up to 16 domains, forming
a major barrier for PMO protections. Although there is some
recent effort trying to virtualize MPK to circumvent the limit, it
suffers large overhead. This paper presents two novel architecture
supports, which provide 11−52× higher efficiency while offering
the first known domain-based protection for PMOs.

Keywords—Persistent Memory Objects, Memory Protection
Keys, Intra-process Isolation

I. INTRODUCTION

Persistent memory (PM) is emerging as a promising sup-
plement or substitute of DRAM as main memory, offering
higher density, better scaling potential, lower idle power,
non-volatility, while retaining byte addressability and random
access [1], [27], [30], [31]. With the right abstraction and
support, PM enables data structures to be kept in memory
beyond process lifetime [49]. Such Persistent Memory Object
(PMO) abstraction can be attached (or mapped) to process
address space as it uses data, and detached (or unmapped)
from its address space afterward. Data in a PMO is long lived;
its existence and structure are preserved across process runs. A
PMO may be managed by the OS similar to a file (namespace
and permission) but accessed like data structures (load/store
instructions, pointers, etc.).

While file access is protected by system calls, an attached
PMO is one load/store away from accidental (or malicious)
reads or writes, which may arise from use of just one buggy
library. This creates a situation where the adversary may
perform memory attacks, such as memory corruption due to
unauthorized memory writes or memory disclosure due to
unauthorized memory reads. Countless of security attacks have
been enabled by memory attacks, including code-reuse [42],

[44], [47], code-injection [38] data-oriented [21] attacks, and
so on. In addition to heightened risk of data disclosure or
corruption, PMO also suffers from heightened cost of such
memory attacks, as it keeps valuable data that is long lived.

In this paper, we try to answer the question of how to
improve the security of a PMO that is attached to a process.
We point out that memory attacks on PMO data may arise
spatially (e.g., when a thread of a process that is not authorized
accesses the PMO attached in this process) or temporally (e.g.,
when a thread accesses the PMO beyond its authorization
window). The goal of this work is to provide a process spatio-
temporal protection of PMOs.

Intra-process isolation techniques enable a process to par-
tition sensitive data and code into isolated components. By
specifying access policy via applying the principle of least
privilege to each isolated component (e.g. a group of pages),
intra-process isolation limits the influence of bugs and vulner-
abilities to one component. One such intra-process isolation
support is Intel Memory Protection Key (MPK) [22], which
extends the x86 Instruction Set Architecture (ISA) with the
capability of defining domains. With MPK, a process address
space can be partitioned into up to 16 domains, with each
domain represented by a protection key. A new 32-bit register,
PKRU, is added to each logical core, providing a way to
express the access policy (read/write) of each domain for
each thread. The PKRU is integrated with the TLB checking
mechanism to allow the memory management unit (MMU) to
enforce the policy.

Intra-process protection may be used to provide spatio-
temporal protection for PMOs. The basic idea is that when a
process attaches a PMO, the PMO is placed into a protection
domain, and access control policy is set for the domain. When
a thread accesses PMO, the corresponding load or store is
checked against the access policy of the domain for the thread,
as well as the page access policy from the TLB or page table.
The more restrictive permission is derived to determine the
legality of the access.

However, using MPK to support intra-process isolation of

PMOs runs into security and scalability challenges. First, MPK
supports only 16 protection keys, which is too few. After 16
keys are allocated, further pkey alloc() call will return with
an error, which forces the programmer to either forgo the use
of domains, or reuse an old domain for multiple unrelated
PMOs. For example, consider a typical server application,
which spawns a thread to interact with a client in response
to a connection request by the client. The thread may store
user-private data (persistently in a PMO in our case). The
Heartbleed vulnerability targeting OpenSSL demonstrates that
a vulnerable library allows the attacker to steal sensitive data
such as private keys and passwords [41]. Allocating different
users’ data in separate domains improves security by isolating
each user data from other threads that are not meant to access
it. Having too few keys forces data from multiple clients
to share a single domain and key, allowing a compromised
thread to access data intended for other threads. Therefore,
the number of domains should ideally be high. As a starting
point, in Linux a process can open 1024 files simultaneously,
some server applications may allow thousands of connections;
so at least several thousands of simultaneously attached PMOs
should be supported. Extending MPK to support several thou-
sand domains is not feasible as it requires extending the PKRU
register to several kilobytes in size, which requires substantial
changes in the ISA and may affect critical path delays in the
pipeline.

A recent effort, libmpk [39], circumvents MPK’s limit of
16 domains via software-based virtualization. libmpk supports
a large number of domains but map only 16 of them to
protection keys. If the program accesses only mapped domains,
no performance overhead results. However, if it accesses an
unmapped domain, an exception is triggered, and the exception
handler selects a domain to unmap and reassigns the key to
the new domain. This step involves very substantial overheads
including rewriting the domain field in affected page table
entries of the victim and new domains, TLB shootdowns of all
cores, writing to PKRU, etc. As a result, libmpk suffers from a
large runtime overhead (17.4× slowdown for each permission
update on 35 domains [39]).

To support a large number of protection domains effi-
ciently, we propose two novel architecture mechanisms. The
first design, Hardware MPK Virtualization, builds on MPK
while giving an illusion of unlimited domains. Similar to
libmpk [39], at any given time, only 16 domains map to keys.
When an unmapped domain is accessed, a victim domain
is selected and unmapped, and its key is reassigned to the
new domain. Different from libmpk, we provide MMU-like
support for handling domains, including a radix-tree Domain
Translation Table that can be walked by a hardware handler,
and Domain Translation Lookaside Buffer (DTLB) that caches
the table for fast access. Much of the remaining architecture
is unmodified from MPK.

The second design, Hardware Domain Virtualization, is
more aggressive; it removes the need for limited keys alto-
gether. It manages a large number of domains without mapping
them to keys first. It manages per-thread access control directly

on domains, offering even greater flexibility in domain-based
protections. A key benefit to this design is removing the need
for TLB shootdown when an entry is evicted or changed.

Overall, this paper makes following major contributions:
1) We propose to improve the security of PMOs from

memory attacks by assigning each attached PMO to a
protection domain, providing intra-process isolation of
PMOs.

2) We propose an architecture support for efficient MPK
virtualization, which supports a large number of domains
sharing a limited number of protection keys. This is built
on top of MPK.

3) We propose an architecture support for domain virtu-
alization, which manages per-thread permission directly
on domains, completely removing the mapping of do-
mains to a limited number of keys.

4) We evaluate both schemes and show that they perform
11× and 52× speedups over libmpk, the state-of-the-art
software MPK virtualization.

II. BACKGROUND

This work focuses on intra-process isolation, that is, the iso-
lation of accesses among different threads that share the same
address space. Inter-process isolation is relatively easier as
different processes have different address spaces, and explicit
APIs with permission control flags can be used when sharing a
PMO among processes (similar to the APIs for shared memory
management).

A. Intra-Process Isolation Support

Intra-process isolation has been long recognized as im-
portant for security, especially as program complexity is
increasing. One approach to such isolation is capability-based
addressing [56], [57], where pointers are replaced by pro-
tected objects (called capabilities), which specify the objects
that the pointers can legally refer to. A recent example is
CHERI [56], [57], where a fat pointer specifies legal bounds
and permissions, and a co-processor check for access validity.
CODOM [51] needs dramatic hardware changes to achieve
efficient intra-process isolation. A less comprehensive (but
simpler) solution is to add explicit code to check bounds
of pointer references [43], [43], [53]. Hardware support for
accelerating bounds check, such as Intel MPX, has been
proposed, and shown to incur a much lower slowdown (e.g.
about 30% [29]).

A complementary approach to intra-process isolation is to
focus on the objects being referenced, rather than the pointers
that de-reference them. It specifies, for a given memory object
(such as pages), when (temporal) which threads (spatial) can
access the pages. Example hardware page protections [7], [8],
[12], [32], [35] support memory isolation and provide near
zero overhead within a component. But switching between
components still involves a switch to kernel mode, which
incurs substantial overhead. Intel MPK [22] is an example of
hardware support implementing this approach, explained next.

2

B. Intel Memory Protection Key

The recently released Intel Memory Protection Key (MPK)
extension [22] allows the address space to be partitioned
into 16 disjoint domains, and each domain is represented
by a protection key. A new 32-bit register, PKRU, is added
to each logical core to specify and enforce thread-specific
permission (read and/or write) for each key. Each key uses
one bit for read permission and one bit for write permis-
sion. Two non-privilege user-level instructions are provided
to write and read the PKRU register: WRPKRU instruc-
tion writes a new value to PKRU register (˜11-260 cycle
latency), while RDPRKU instruction reads the current value
of PKRU. Three system calls are implemented in Linux kernel:
pkey_alloc() allocates an unused key from 16-bit bitmap
in kernel, pkey_free() frees a key and marks it available,
while pkey_mprotection associates a key with page table
entries (PTEs) by changing the key value in all PTEs.

MPK can be used to support executable-only memory by
changing the domain permission as inaccessible in the PKRU
register. Code can still jump to this domain and execute code
but all reads and writes are prohibited for this domain.

After associating a domain with a protection key, writing
it in PTEs, and setting the appropriate PKRU value for the
domain, a memory access to this domain will result in the
PTE (along with the protection key value) cached in a TLB
entry. The access will read the protection key value from the
entry, which then indexes the PKRU to obtain the permission
bits associated with the key. The access is legal if the both
domain permission (in PKRU) and page permission (in TLB)
allow the access.

C. Persistent Memory Programming Support

Non-volatile memories (NVMs), such as Intel Optane DC
Persistent Memory, provides high capacity at low cost, low
idle power, byte-addressability, persistence, and performance
similar to DRAM [1], [27], [30], [31]. There are at least two
paradigms for using NVM. One uses it as storage to host a file
system, the other uses it via a new abstraction where a data
structure is wrapped into a persistent memory object (PMO),
which allows the data structure to be hosted persistently in
physical memory without involving a file system. PMOs may
combine some features of a file system (naming, permission,
durability, and sharing) and some features of data structures
(pointer-rich, address space mapping, purely load/store ac-
cess). In this paper, we assume the latter.

Object ID: Pool identier

32 bits 32 bits

Pool offset

Fig. 1. Structure of pool pointer [11], [54], [55]

A PMO may be a container for a data structure that
lives beyond process termination and system reboots. A PMO
requires several features to be supported: crash consistency
allowing a PMO to remain in a consistent state even on process
crashes or system power loss, OS-managed namespace and

permission allowing the PMO to be found on recovery, attach
and detach primitives allowing the PMO to be attached to a
process address space when needed and detached afterward,
relocatability allowing the PMO to be attached at virtual
address different from the one from the previous session [60].
PMOs may be implemented as pools [11], [14], [23], [54],
[55], each given a unique identifier. A pool may be organized
as a collection, with a root object from which all other objects
in the pool can be reached. In this paper, we use the term PMO
as a general concept, and pool as a specific implementation
of a PMO, which may not have all features a PMO should
support.

To support relocatability, each pointer (64-bit) used in a data
structure is split into a 32-bit pool ID (ObjetID) concatenated
with a 32-bit offset within the pool (Figure 1). To address a
pointer, the base address for the ObjectID is added to the
offset. PMDK [23] and other prior works [14], [54] have
described interfaces for manipulating pools and objects. We
adopt the interface proposed by Wang et al. [54]. It supports
functions for creating pools or objects within pools, supports
mechanisms for persisting objects and failure-safety through
durable transactions. Table I shows a subset of their interface.
Our design is compatible with software [11], [14], [23] and
hardware [54], [55] support for PMO relocatability.

TABLE I
POOL APIS DESCRIBED IN PRIOR WORK [23], [54].

Function Description
pool*
pool create (name,
size, mode)

Create a pool with the specified size
and associate it with a name. The
running process is the owner.

pool*
pool open (name,
mode)

Reopen a pool using name that was
previously created. Permissions will
be checked.

pool close(pool* p) Close a pool p

OID pool root(pool*
p, size)

Return the root object of the pool p
with specific size. The root object
is intended for programmers to design
as a directory of the contents in the
pool.

OID pmalloc (pool*
p, size)

Allocate a chunk of persistent data
with the given size on pool p and
return the ObjectID of the first byte.

pfree(oid) Free persistent data pointed to by
the ObjectID.

void*
oid direct(oid)

Translate an ObjectID to a virtual
address. Used when there is no
hardware translation.

III. THREAT MODEL

Just like any other data structures, data structures in PMO
may contain buffers and pointers. Code that accesses PMO
may contain regular known vulnerabilities. Our mechanism
seeks to make unauthorized reads or writes to data in PMOs
difficult by applying the principle of least privileges; unautho-
rized reads or writes are the fundamental schemes many types
of memory attacks rely on.

3

The attacker may compromise a thread of the same process
and try to exploit the memory vulnerabilities. While a PMO
is attached, the attacker may attempt to read or write data in
the PMO. We do not assume that the attacker has an ability
to arbitrarily inject or execute arbitrary code (if he/she could,
there are not many protection schemes that are effective against
it).

We assume trusted system software, such as the OS, which
manages address space isolation between processes, and com-
piler, which generates code correctly given user program.
Furthermore, we assume that trusted hardware, like processor
memory management unit (MMU), is implemented correctly,

User-level permission change instructions can only be in-
serted by the programmer or compiler. We can prevent the
attacker from injecting or reusing these instructions (e.g.
through ROP) by implementing call gates and performing
binary inspection and rewriting similar to ERIM [50].

Side-channel and rowhammer attacks, and microachitectural
leaks, although important, are beyond the scope of this work.

IV. DESIGN

A. Protection Goals

In order to protect PMO data from accidental or malicious
reads/writes, we apply the principle of least privilege by
granting PMO access permission only to the threads that need
to access it (spatial isolation), and only when they need to
access it (temporal isolation). In particular, we require that an
access to PMO from a thread is legal only if (1) the page
has the appropriate read/write permission, (2) the process has
attached the PMO, and (3) the thread has read/write permission
to the domain associated with the PMO.

To achieve the first requirement, we rely on traditional
virtual memory mechanisms for enforcing per-page process-
specific permission.

To achieve the second requirement, we assume that PMOs
are managed by the OS and laid out in physical memory, either
contiguously or non-contiguously (with embedded page table
support). To attach a PMO to its address space, a process
makes a system call specifying the PMO path/name and the
requested permission. If a PMO is successfully attached, the
system call returns a PMO ID which is also the domain ID.
A PMO can map only to an aligned and contiguous range
of virtual address that corresponds to the granularity of the
hierarchy level of the page table. For example, the smallest
PMO occupies 4KB VA region, the next larger PMO occupies
2MB VA region, and then 1GB, etc., corresponding to the level
in the page table. Note that the PMO does not have to use the
entire VA range allocated to it.

A process can express intent to read (R) or both read and
write (RW) to the PMO. The system call ensures that the OS
can grant attachment requests only if the user who owns the
process is allowed to attach the PMO. The system call will also
enforce inter-process isolation, locking, and sharing policy. For
example, a PMO may be attached exclusively to only one
process for writing, but may be attached to multiple processes
for reading. The system may also keep a finer grain permission

scheme based on attach key, where a process must produce
the correct key for the attach request to be granted. This
allows an additional restriction to specify which user processes
should be allowed to attach a PMO. The system may also
detach a PMO from a process upon request or automatically
when appropriate, for example when a process terminates prior
to detaching a PMO, or when it is suspected to have been
compromised by security attacks.

To achieve the third requirement, we start by an observation
that protection domains, such as Intel MPK, is a good fit
for PMOs for its spatio-temporal protection capability. The
spatial protection allows permission for a domain/PMO to be
defined differently for different threads, providing inter-thread
protection where only a thread with sufficient permission can
access the domain. The temporal protection allows permission
to be added or removed for the same thread over time, pro-
viding intra-thread protection. To add or remove permission,
we introduce a user-level instruction SETPERM. SETPERM
takes a domain ID as a source operand, and a read/write flag
as the second source operand. The instruction allows granting
access to a PMO by setting (or unsetting) read or read/write
permission for the thread that executes it. SETPERM is similar
to WRPKRU MPK, but with a difference that it only sets
permission for one domain, whereas WRPKRU simultaneously
sets the permission for 16 protection keys using all 32 bits.
Therefore, SETPERM works with a large number of domains,
unlike WRPKRU which is limited to 16 keys.

The SETPERM instruction must be compatible with the
processor memory consistency model. With sequential consis-
tency, processor consistency, and total store ordering (TSO), it
is treated as a store instruction. For more relaxed consistency
models, such as weak ordering or release consistency [48],
it is treated as a full memory fence/barrier. As such, we are
guaranteed that any loads/stores older than it are performed
prior to allowing any younger loads/stores to perform. The
appropriate PMO domain permission for this thread is changed
at the fence point.

PMO1 = Attach(<name>,RW)

PMO1.setperm(+R)

Ld A

St B

PMO1.setperm(+W)

St C

PMO1.setperm(-R. -W)

Ld D

Detach(PMO1)

Thread 1

PMO1 = Attach(<name>, RW)

PMO1.setperm(+R, +W)

St A

…

PMO1.setperm(-W)

(a) (b)

Thread 1

Thread 2

Ld A

PMO1.setperm(+R)

St B

Fig. 2. Example of: (a) Intra-thread (temporal) protection (b) Inter-thread
(spatial) protection.

The domain-based PMO isolation is illustrated with an
example in Figure 2. Assume that addresses A, B, C, and D

4

reside in PMO1. Part (a) illustrates temporal isolation. First,
Thread1 attaches PMO1 with intended read/write permission
to the process address space. This does not yet grant any
threads to read/write to the PMO/domain, until it sets the
per-thread read permission (+R). The subsequent ld A is
permitted but st B is denied. After adding write permission
(+W), st C is permitted. When read and write permissions
are removed (-R, -W), ld D is denied. The permission setting
is thread specific, as illustrated in part (b) of the figure.
For Thread1, st A is permitted. For Thread2, ld A is denied
because Thread2 has not obtained permission, and st B is also
denied because the permission is insufficient. The instructions
to add/remove domain permission for a PMO must be inserted
by the programmer (e.g., through API or #pragma), or by the
compiler based on program analysis.

B. Number of Protection Domains

We draw a distinction between domains and protection keys.
Each attached PMO is assigned a domain. But current architec-
tures manage permission based on protection keys; hence there
is a gap between our goal and the current architecture support.
More importantly, Intel MPK supports only 16 protection keys,
which may result in compromised security if the programmer
forgoes the use of domains or reuses a domain for multiple
unrelated PMOs.

Consider an example of a typical server application, which
spawns a thread for each connection request by the client.
The thread may store user-private data (persistently in a PMO
in our case). The Heartbleed vulnerability targeting OpenSSL
demonstrates that a vulnerable library allows the attacker to
steal sensitive data such as private keys and passwords [41], so
allocating different users’ data in separate domains improves
security by isolating each user data from other threads that are
not meant to access it. Having too few keys forces data from
multiple clients to share a single domain and key, which may
reduce security. For example, suppose that thread 1 should
have read permission for PMO A but read/write for PMO
B, denoted as R1(A) and RW1(B), respectively. If A and
B share one protection key X , then the permission of X
must be the least restrictive of A and B, which is RW .
However, setting RW1(X) means that the thread can write
to A even though it should not. Hence, the security pro-
tection has weakened. Furthermore, incompatibility between
threads complicates this grouping. Suppose that RW1(B) and
RW1(C) but RW2(B) and None2(C), forcing B and C to
share a key does not weaken permission for thread 1 but
weakens for thread 2. Despite the best clustering analysis to
group domains with similar permissions across all threads, we
will still have cases where security is weakened due to the
limited number of protection keys. How large the appropriate
number of supported domains should be is an open question.
A large number of domains can provide protection flexibility,
especially for server applications which may spawn many
threads with each serving a different user. As a starting point,
in Linux a process can open 1024 files simultaneously, some
server applications may allow thousands of connections; so

at least several thousands of simultaneously attached PMOs
should be supported.

Extending MPK to support several thousand domains is not
feasible as it requires extending the PKRU register to several
kilobytes in size, which is not feasible for several reasons.
First, PKRU is read into or written from a general purpose
register, so its width must match the width of such a register
(e.g. 32 bits for EAX/EBX/ECX/EDX). Second, its checking
time must fit within the number of clock cycles allocated for
TLB check, hence if too large, the critical path delay of TLB
checking will be affected.

C. High-Level Design

Retrieve DomainID
VA

Memory Access

NULL DomainID

Domain Access

TLB / Page Table
VA

Domainless Access

DomainID DomainID
Check Domain Permission

Domain
Permission

Page Permission
Strictest

Permission

Not Found
Error

Fig. 3. Illustrating how domain protection is integrated into the MMU.

At a high level, domain-based protection is integrated into
the MMU as steps performed in parallel with traditional page-
based permission checking, as illustrated in Figure 3. When
a load/store virtual address is available, it is used to retrieve
domain ID and the domain ID is used to check the domain
permission for the thread. In parallel, the TLB or page table
is checked for traditional page permission. The two permis-
sions are compared to derive the strictest permission, which
determines the legality of the access. The parallel checking
avoids adding to the critical path of access. Furthermore, not
all applications may need domain protection, hence a NULL
domain ID is reserved to indicate that domain checking is
unnecessary. Next we will discuss the proposed techniques:
MPK virtualization and domain virtualization.

D. Hardware-Based MPK Virtualization

Figure 4 illustrates the design and mechanism of our
hardware MPK Virtualization. Recall that in this design, we
build on top of MPK, preserving most of its features and
structure. Thus, we must add a mechanism to allow mapping
a large number of domains to 16 protection keys. This is
accomplished by keeping the mapping of domains to keys
using a Domain Translation Table (DTT). DTT is an OS-
managed data structure created for each process that uses
domain protection. It is indexed by virtual address (VA) and
each entry contains the domain ID, current protection key the
domain ID maps to, and permission for the domain. Since
the address space of a process may be sparse, the DTT is
organized hierarchically, similar to a page table. In the figure,
DTT is shown to have a two hierarchy level, because the
example PMO occupies a 2MB region. Analogous to the
TLB as a cache for the page table, Domain Translation Table
Lookaside Buffer (DTTLB) is the cache for the DTT to allow
fast mapping of VA to protection key. However, whereas DTT

5

VA Range
Tags (36 bits)

Protection
Key (4 bits)

010…xxx 1001
110…xxx
110…xxx

1011
0000 (null)

VA
010…01

Domain Translation Table
Lookaside Buffer (DTTLB)

ld/st

TLB

VPN

Protection
Key (4 bits)

1111
1001
0000

PFN

…101
…111
…011

Page
Perm.

01
11
10

Protection Key

2

4

1

Page
Permission

Domain
Permission

Strictest Permission

9

PKRU Register

PMO ID
(32 bits)

101…011
110…101
110…111

3 Domainless access

R W R W
0 1 30 31

Perm
(2 bits)

00
10
01

TLB miss
VA

Protection Key

Miss or WB

Domain Translation Table (DTT)

L4 Directory L3 Directory

PMO
Reg.

PMO Root Entry

6 7

5

Valid/Dirty
(2 bits)

1/0
0/1
1/1

Eviction (PMO)

Free
Keys

8

Update
permission

10

11

12

Fill

Fig. 4. Diagram of the MPK virtualization scheme.

keeps permission for all threads in a process, DTTLB only
caches the permission for the thread that currently runs in the
core.

A DTTLB/DTT entry contains a 36-bit VA range tag, a
32-bit PMO/domain ID, a Valid bit, a Dirty bit, and a 4-bit
protection key. The VA Range allows each entry to represent
an entire domain expressed as its base VA and domain size.
Alternatively, since a PMO occupies contiguous and aligned
VA range that corresponds to page sizes (4KB, 2MB, or 1GB),
the VA range can simply be the base address with a two-bit
field to indicate which size it uses. The 4-bit protection key
represents which key a PMO/domain ID currently maps to. A
NULL key value (0000) is reserved to indicate that this PMO
is domainless. The ”Free Keys” structure keeps all keys that
are not mapped. There are two kinds of entries in the DTT,
directory entry and PMO root entry. One valid bit and one next
level bit are introduced in both kinds of entries. Next level bit
indicates the next level is either a directory (1) or a PMO (0).
A dictionary entry points to the physical frame number (PFN)
of the next level directory. The root entry of a PMO stores its
ID. DTT is pointed by a register for looking up.

This design introduces no changes to the TLB, page table
structure, or MPK mechanism. DTTLB can be quite small,
even 16 entries are sufficient to hold all 16 domains that map to
protection keys, making it feasible to use content-addressable
memory (CAM) for associative lookup. However, DTTLB can
have more than 16 entries to hold information of all domains
in the thread working set.

a) Handling a TLB Hit: A TLB hit is handled identically
to the MPK mechanism. When a ld/st accesses a VA (1 in
Figure 4), the TLB is checked for a match 2 . On a match,
a protection key is read out. If the key is NULL (0000), this
access is domainless 3 . If the key is not NULL, the key is used
to index the PKRU register to obtain its domain permission
4 . If the load/store is legal according to both the domain
permission and page permission 5 , the load/store is allowed
to access the cache. Otherwise, an exception is raised.

b) Handling a TLB Miss: A TLB miss is handled differ-
ently from MPK. On a TLB miss, the VA is checked against

VA range tags in the DTTLB 6 . If a match with a valid entry
is found, the protection key is read and supplied to the TLB
to be combined with other information obtained from page
table walk 7 . A match with an invalid entry indicates that
the domain is not currently mapped to a key. If a free key is
available, the key is then assigned to the domain 8 , PKRU is
updated to reflect it 9 , and the valid bit is set. If a free key is
not found, a victim domain is selected, based on a replacement
policy (Pseudo LRU in our implementation). Then, the key is
reassigned from the victim domain to the new domain and the
DTTLB entry of the victim domain is marked invalid and dirty
10. The DTTLB entry of the new domain is marked valid and
dirty. Then, the PKRU is updated to reflect the permission
of the new domain associated with the protection key 11.
TLB shootdown is then initiated (Range Flush of the victim
PMO VA range) for all cores in order to invalidate the victim
pages’ mapping to the protection key. The accessed page in
the new PMO fills the TLB with the protection key mapping.
If a DTTLB miss occurs, the DTT is walked to find both its
domain information (ID and permission). DTTLB updates the
DTT lazily; when a dirty DTTLB is evicted, its protection key
mapping updates the DTT 12.

The entries in DTT are added/removed by the attach and
detach system calls. The instruction SETPERM updates the
permission information in a DTT entry, and will result in
invalidating the corresponding entry (if cached) at the DTTLB.

c) Security Assessment: Let us now discuss the impact of
MPK virtualization on PMO security protection. First, we note
that spatio-temporal domain protection requires that (1) Every
memory access must be checked to identify its domain, and
(2) For an access to a certain domain, its legality is checked
against the domain access permission for the thread.

The proposed method meets both requirements. When a
PMO is attached, the PMO/domain ID and its VA range are
added as a new entry in the DTT. All memory accesses to this
VA Range that suffers a TLB miss will check the DTTLB (if
hit) or trigger a DTT walk (if miss). Domain accesses to PMOs
find its PMO ID in TLB, DTTLB, or DTT, and they are treated
as domain accesses. An access that does not find a domain

6

in the DTT is a domainless access and recorded with NULL
domain in the TLB. When domain-to-key mapping changes
in the DTTLB, TLB shootdown ensures that TLB entries are
invalidated if their mapping is affected, while the PKRU is
updated to reflect the permission of the new domain. Hence,
both requirements are met.

Care must be taken on context switch to continue meeting
the requirements. Because PKRU and DTTLB entries are
thread specific, it must be flushed upon a context switch.
Any dirty entries in the DTTLB must be written back to the
DTT prior to the switch. In MPK, the PKRU is part of the
process state that is saved and restored. In our design, because
DTT contains information of all domains and permission of
that domain for all threads, hence the content of DTTLB and
PKRU can be reconstructed when the thread resumes in the
future, hence they can be flushed.

d) Comparison with libmpk: Our design efficiently and
transparently supports a large number of domains with minor
hardware modifications by virtualizing the assignments from
PMO IDs to protection keys. When an access to an unmapped
domain occurs, libmpk incurs an exception that triggers an
exception handler to unmap and map the domain by writing
to as many PTEs as the affected domain has. In contrast,
DTTLB allows the unmap and map to occur in hardware
and changes are reflected in the PKRU. Both libmpk and
our MPK virtualization involve TLB shootdowns, however,
the cost of shootdowns is proportional to the size of TLB,
while libmpk’s PTE changes is proportional to the domain
size. Hence, our MPK virtualization is both faster and more
scalable. Furthermore, with our solution, programmers do not
need to memorize the assignment from PMO IDs to protection
keys, or explicitly handle the assignment and reassignment
from PMO IDs to protection keys in the PKRU register. They
can simply change the permission of a PMO ID.

E. Hardware-Based Domain Virtualization

The first design, hardware MPK virtualization, supports
a large number of PMOs/domains while leveraging existing
MPK hardware as much as possible. However, a critical
drawback is that everytime a domain-key mapping changes,
TLB shootdown must be initiated to invalidate stale VA-to-
key information in TLB entries. As the number of domains
sharing 16 protection keys increases, domain-key remapping
becomes more frequent, triggering frequent TLB shootdowns.
Thus, we need a more scalable alternative design. We propose
hardware domain virtualization that obviates the need for TLB
shootdowns.

a) Architectural Design: This design foregoes MPK and
introduces a new mechanism to enable direct permission
lookup, as illustrated in Figure 5. It makes a minor change
to the TLB by adding a 10-bit domain ID in each TLB entry
in place of the protection key ID. If there is a TLB miss,
the domain ID for a page is retrieved from the Domain Range
Table (DRT), an OS-managed data structure. DRT is organized
similarly to DTT with a hierarchical table, but without keeping
domain permission information. DRT may have directory entry

or PMO root entry. Each entry of either type has a valid bit and
a next level bit. The next level bit indicates whether the next
level is a directory (1) or a PMO (0). The directory entry has a
36-bit page frame number (PFN) of the next level dictionary.

The permission information for domains and threads is
kept using a separate table called the Permission Table (PT),
another OS-managed data structure. It is indexed by domain
ID and thread ID, and contains the domain permission for
the thread. To provide fast permission check, this information
is cached in a hardware structure called Permission Table
Lookaside Buffer (PTLB). A PTLB entry contains a 10-bit
domain ID used as tag, a 2-bit permission, and a dirty bit. The
permission can be 1x (inaccessible, execute only), 01 (read-
only), or 00 (readable and writable).

b) Operations: DRT and PT entries are added or re-
moved in reaction to the attach or detach system calls. As
before, each PMO is assigned a unique domain ID. PTLB
miss results in retrieving the domain permission information
for the thread from the PT. Permission change requests to a
domain (SETPERM) can be completed entirely in the PTLB
by directly changing the domain permission. The dirty bit for
such an entry is set when its domain permission changes.
When a dirty PTLB entry is evicted, the permission is written
back to the PT.

To check permission for a load/store instruction 1 , first the
VA is used to access the TLB 2 . If we have a TLB hit, the
domain ID and page permission are retrieved 3 . If the domain
ID is NULL, the access is a domainless access and no further
action is taken. Otherwise, the retrieved domain ID is used to
look up the PTLB to retrieve the domain permission 4 . If the
load/store is legal according to both the domain permission and
the page permission 5 , the load/store proceeds. Otherwise, an
exception is raised.

If we have a TLB miss 6 , page table walk and DRT walk
are performed in parallel. The physical address obtained from
page table walk and domain ID obtained from DRT walk are
combined into the new TLB entry 7 . If the VA is not found in
the DRT after the walk, it does not belong to any domain, so
a NULL domain is used. After the TLB, PTLB is checked. If
we have PTLB hit, domain permission is retrieved and used.
If we have a PTLB miss 8 , a victim PTLB entry is selected
to make room for a new entry, and the PT is looked up to
retrieve the domain permission for the new entry 9 .

c) Security Assessment: As with MPK virtualization,
domain ID for an access is always retrieved (via TLB and
DRT), and domain permission for the thread is always checked
(via PTLB and PT). Both security requirements are hence met.

Handling context switches requires flushing thread-specific
information in the PTLB, but not the TLB. Any dirty entries in
the PTLB are first written back to the PT, then all entries can
be flushed. The information of domain ID in the TLB remains
valid. As the PT has only a few entries (16 in our base case),
the impact of flushing it on context switch on performance is
small.

7

Bits
1x
00
01

Inaccessible
read write
read only

Permission

VA
010…01

Page
Permission

Domain
Permission

Strictest
Permission

ld/st

1
6

TLB

VPN

Domain ID
(10 bits)

101…101
111…101
101…111

PFN

…101
…111
…011

Page
Perm.

01
11
10

Domain
ID

Domain ID

Permission

Permission Table
Lookaside Buffer (PTLB)

Domain ID
Tag (10 bits)

Permission
(2 bits)

1010…101 01
1010…111
1010…111

00
01

PTLB miss

Thread 1
Perm.

Thread k
Perm.

10 10
00
00

00
00

Domain ID
(10 bits)

5
2
1

Permission
Table (PT)

42

TLB miss

L4 Directory
Domain Range Table

L3 Directory L2 Directory

PMO ID PMO ID

Next Level

PMO (0)

Directory (1)

Next level bit (1 bit),
Valid (1 bit),
PMO ID (32 bits),
Domain ID (10 bits)
Next level bit (1 bit), Valid (1 bit)
PFN of next Directory (36 bits)

Content
Domain Range Table Entry

7

Reg.

3

8

5

9

…

…
…
…

Perm

Fig. 5. The Domain Virtualization Design and Mechanism.

V. EVALUATION METHODOLOGY

We base our simulator on Sniper simulator [10], a cycle-
accurate X86 simulator. PMOs are implemented as memory
mapped regions. We evaluate the following schemes. The first
scheme is non-protected execution serving as the baseline.
Intel Pin [36] was used on a real machine to obtain a trace
that is then fed to the simulator to obtain baseline perfor-
mance. The second scheme is an ideal MPK virtualization
(lowerbound), which represents a case where no overhead is
added to MPK except for programming of PKRU through
WRPKRU instructions. We insert WRPKRU instructions to
enable each PMO access and disable it afterward. We execute
the program with Pin to obtain its trace, which is fed into
the simulator to obtain its performance. One can think of this
scheme as having MPK virtualization without any penalties for
accessing the DTTLB or DTT. The third scheme we evaluate
is the realistic version of the proposed scheme, obtained by
feeding into Sniper the trace with WRPKRU instruction and
the architecture overheads introduced in our schemes. The
parameters used in our schemes are shown in Table II. Sniper
does not support the WRPKRU instruction and regards it as
unknown, hence we add appropriate delays (27 cycles) to
executing the WRPKRU instruction when we re-execute the
trace in the simulator.

Our experiments of architectural overhead are based on the
design logic in Section IV and overhead values in Table II.
In the setting, the DTTLB/DTT table walk can be executed
in parallel with traditional page table walk. DTT table walk
latency is the same as or smaller than page table walk latency.
On a DTTLB hit, the latency of DTTLB add/modify/search is
always smaller than page table walk latency of TLB misses.
So there is no extra overhead on TLB miss. TLB invalidation
overhead is the sum of the overhead for a key remapping
for number of thread threads. The subsequent TLB misses
resulting from TLB invalidations is also taken into account.
For the domain virtualization design, there is no extra overhead
on a TLB miss since the DRT and page table can be walked
in parallel and the DRT is shallower than the page table.

TABLE II
SIMULATION PARAMETERS.

Processor 2.2 GHz, 4-way issue Out-of-order, 128-entry ROB,
Intel x86-64 architecture, Pentium M branch predictor

Cache L1D cache 8-ways 32KB, 1 cycle access time;
L2 cache: 16-ways 1MB, 8 cycles access time

Memory DRAM latency: 120 cycles; NVM latency: 360 cycles;
64 GB/s Bandwidth; Directory-based MESI protocol

TLB

L1 data TLB: 4KB pages, 4-way, 64 entries;
L2 4KB/2MB pages, 6-way, 1536 entries;
1 cycle L1 TLB access, 4 cycles L2 TLB access;
30 cycles TLB miss penalty

MPK WRPKRU: 27 cycles

MPK
Virtualization

DTTLB: 16 entries;
Free keys check/update: 1 cycle;
DTTLB hit: 1 cycle;
Add/Remove/Modify DTTLB entry: 1 cycle;
DTTLB miss: 30 cycles, PKRU update 1 cycle;
TLB invalidation: 286 cycles

Domain
Virtulization

PTLB: 16 entries;
PTLB access: 1 cycle;
PTLB miss (incl. permission table lookup): 30 cycles;
Add/Remove/Modify PTLB entry: 1 cycle

We assume main memory consists of DRAM and NVM.
The NVM latency is 3× higher than DRAM latency, in line
with Intel Optane DC Persistent Memory characterization [24].
PMO accesses use NVM latency while other accesses use
DRAM latency.

TABLE III
WHISPER BENCHMARKS [37] AND THEIR CONFIGURATIONS.

Benchmark Description
Echo echo test, 100k transactions in total
YCSB YCSB like test, 80% writes,

100k transactions in total
TPCC TPC-C like test, 80% writes,

100k transactions in total
C-tree 100K insert operations
Hashmap 100K insert operations
Redis redis server/ lru-test, 1 million gets/puts

Single PMO on WHISPER Benchmarks: WHIPSER

8

benchmarks are based on real world persistent memory (PM)
applications, including PM key-value stores Echo and Redis, a
PM database N-store, and PM transactional libraries. Although
each of its benchmarks uses only a single PMO, evaluations on
them can help measure the inherent overhead from applying
domain protection on real world persistent memory applica-
tions and how our schemes affect the overhead [37].

As listed in Table III, we execute WHISPER benchmarks
using 100k transactions or operations in a 2GB PMO of
single thread. We assign the entire PMO with a protection
key through pkey_alloc() and pkey_mprotect(). The
default permission for this key is inaccessible. We insert
pkey_set/WRPKRU before and after every PMO access to
enable or disable the access to this protection key associated
with the PMO.

TABLE IV
MICROBENCHMARK DESCRIPTION.

Benchmark Description
AVL Tree (AVL) Insert or delete nodes in the tree.
RB tree (RBT) Insert or delete nodes in the tree.
B+ tree (BT) Insert or delete nodes in the tree.
Linked List (LL) Insert or delete nodes in the linked list.
String Swap (SS) Randomly swap strings in the string array.

Multi-PMO on Micro Benchmarks: To study the impact
of multiple PMOs, we leverage the benchmarks used in prior
NVM studies [11], [14], [26], [34], [46], as shown in Table IV.
Each benchmark has 1024 consecutive PMOs, and each of
them is 8MB in size. Each PMO is a pool of nodes for
the data structures in Table IV. The main data structures
contain nodes in different PMOs with each node containing
a 64-byte value except B+Tree, in which a node is 4096-
byte long, containing 126 values and two pointers. Every
operation randomly selects a node in a PMO to operate on. To
experiment with different numbers of active PMOs, we vary
the set of PMOs such that the largest number of PMOs ranges
from 16 to 1024 with a 16 stride. Compared to the WHISPER
experiment, we enable the write permissions of a PMO before
and after every data structure operation rather than on every
PMO access instruction. The application has read permission
for all PMOs. Every data structure starts with 1K initial nodes.
Each benchmark executes 1 million operations on the data
structure, in which, 90% instructions are insert operations.

VI. EVALUATION

This section first reports the overhead of the two proposed
solutions with a single PMO on WHIPER, compared to the
execution of the default MPK. It then reports the perfor-
mance on multi-PMO benchmarks, compared to the previously
proposed software-based MPK virtualization, libmpk [39]. It
finally provides the area space overhead and security analysis
of the solutions.

A. Single-PMO Results on WHISPER

Table V reports the overhead on WHISPER; the baseline is
the performance of the default runs without protection. The

second column in the table reports the rate of permission
switches, calculated as number of switches per second. (The
permission to the PMO is granted before each PMO access and
disabled after that access). The overheads from MPK on these
benchmarks range from 0.77% to 2.65%. Our first design,
hardware MPK virtualization, enjoys the same performance as
the default MPK because the benchmarks have only one PMO
hence do not need to evict any protection keys. Our hardware
domain virtualization shows slightly higher overheads, 0.85–
2.91%, because PTLB permission lookup increases the latency
of each PMO access even though the data may be in the
cache. The overhead on TPCC is the largest due to a higher
percentage of PMO accesses in the program.

TABLE V
OVERHEAD OF MPK VS. HARDWARE MPK VIRTUALIZATION AND
DOMAIN VIRTUALIZATION FOR WHISPER WITH A SINGLE PMO.

Benchmarks Switches/sec
Overhead (%)

Default
MPK

Virtulization
MPK Domain

Echo 712,631 0.77 0.77 0.85
YCSB 1,152,379 1.48 1.48 1.63
TPCC 951,529 2.65 2.65 2.91
C-tree 839,138 1.21 1.21 1.30
Hashmap 863,251 1.05 1.05 1.14
Redis 1,038,506 1.28 1.28 1.41
Average 926,239 1.41 1.41 1.54

B. Multi-PMO Results

This section presents the performance measurements on the
multi-PMO benchmarks (16 to 1024 PMOs per program).
The access permission to a PMO is granted before a data
structure operation modifies it and disabled right after the
completion of the operation to minimize the security vul-
nerability. Table VI reports the frequency of the permission
switches. The “lowerbound overheads” column in the table
reports the overheads from just executing write permission-
granting and disabling instructions, providing the lowerbound
of the security protection overheads. The lowerbound overhead
is related to the number of switches per second.

TABLE VI
LOWERBOUND OVERHEAD AND PERMISSION SWITCH FREQUENCIES FOR

THE MULTI-PMO BENCHMARKS

Benchmark Switches/sec Lowerbound overheads
AVL Tree (AVL) 2,326,578 3.28%
RB tree (RBT) 1,594,634 2.25%
B+ tree (BT) 2,085,772 2.94%
Linked List (LL) 305,388 0.43%
String Swap (SS) 3,636,006 5.12%

Figure 6 shows how overheads of various schemes compare,
when the number of PMOs varies over the x-axes. The y-axes
shows the execution time overhead percentage over lower-
bound, e.g. 22 means 4% slower, 24 means 16% slower, etc.
The figures show that the overheads of our schemes are much
lower than the software-based MPK virtualization libmpk [39].
The software-based MPK virtualization has almost the same

9

24 25 26 27 28 29 210

Number of PMOs

0

22
24
26
28

210
212

Ov
er

he
ad

 (%
)

AVLtree

Lower Bound Hardware-based MPK Virtualization Hardware-based Domain Virtualization libmpk

24 25 26 27 28 29 210

Number of PMOs

0

22
24
26
28

210
212 RedBlackTree

24 25 26 27 28 29 210

Number of PMOs

0

22
24
26
28

210
212 B+tree

24 25 26 27 28 29 210

Number of PMOs

0

22
24
26
28

210
212 Linked list

24 25 26 27 28 29 210

Number of PMOs

0

22
24
26
28

210
212 StringSwap

Fig. 6. Execution time overheads for the multi-PMO benchmarks as the number of PMOs varies, expressed as percentage slowdown over lowerbound, e.g.
22 means 4% slower, 24 means 16% slower, etc.

number of evictions as the hardware-based MPK virtualization
design. Both of them need TLB invalidations after evictions.
However, the software-based method needs to invoke system
calls, pkey_mprotect(), to clean and set PTE bits in the
page table. Our proposed MPK virtualization does not, and is
hence several times faster.

Our domain virtualization design, in addition to the benefit
of avoiding system calls, further removes the TLB invalida-
tion requirement after every eviction. When the number of
PMOs is small, hardware MPK virtualization provides a better
performance than the Domain Virtualization method does,
because the small eviction rate leads to few TLB invalidations,
while the Domain Virtualization needs to look up PTLB for
every domain access. When the number of PMOs is large, the
advantage of the Domain Virtualization method becomes more
obvious; its overhead is much less sensitive to the number of
PMOs.

The location of the crossing point between the performance
curves of the two hardware-based virtualizations depends on
the data locality of the base application. On programs with
a better locality, the crossing point tends to happen later (as
PMOs increase). It is because on those programs, the TLB
miss rate of accesses to PMOs is lower, while hardware-based
MPK virtualization does not affect the performance of a TLB
hit. For example, B+tree is a flatter tree (126 consecutive
values in a PMO) than AVL tree and RedBlack tree, and hence
it has a better data locality. It has a relatively smaller eviction
rate, and a later crossing point in Figure 6.

On benchmarks with better data locality, all three methods
show flatter curves in Figure 6 and lower overhead percent-
ages. These programs have smaller buffer (DTTLB or PTLB)
miss rates, hence lower eviction rates. The main overheads of
the three methods are caused by evictions. An example is the
comparisons between String swap and Linked list. The former
has a better locality as for each swap operation, two 64-byte
strings get swapped. There are 128 loads/stores incurring only
up to two TLB misses. For the Linked list benchmark, each
node access could cause a TLB miss, hence less flat curves.

Figure 7 shows the average of overheads of the five bench-
marks in one figure. With 64 PMOs, the hardware-based
MPK virtualization is 10.1× faster than libmpk, while Domain

24 25 26 27 28 29 210

Number of PMOs

20

22

24

26

28

210

212

Ov
er

he
ad

 (%
)

Ideal Virtualization
MPK Virtualization
Domain Virtualization
libmpk

Fig. 7. Overhead comparison to libmpk [39] and lowerbound.

Virtualization is 25.8× faster. With 1024 PMOs, the hardware-
based MPK virtualization is 10.6× faster than libmpk, while
the Domain Virtualization is 52.5× faster than libmpk.

TABLE VII
OVERHEAD BREAKDOWN FOR THE PROPOSED SOLUTIONS WITH 1024

PMOS PER BENCHMARK.

Overhead sources AVL RBT BT LL SS Avg
Overhead of Hardware-based MPK Virtualization

Permission change (%) 3.28 2.25 2.94 0.43 5.12 2.80
Entry changes (%) 0.05 0.08 0.11 0.01 0.18 0.09
DTT misses (%) 21.12 23.31 3.12 9.72 7.13 12.88
TLB invalidations (%) 84.56 180.6 37.44 143.4 48.05 98.81
Total (%) 109 206.3 43.61 153.6 60.48 114.58

Overhead of Hardware-based Domain Virtualization
Permission change (%) 3.28 2.25 2.94 0.43 5.12 2.80
Entry changes (%) 0.04 0.07 0.09 0.01 0.16 0.07
PTLB misses (%) 15.83 18.68 2.02 7.52 5.04 9.82
Access latency (%) 3.09 5.23 28.27 4.34 15.49 11.28
Total (%) 22.24 26.23 33.32 12.30 25.81 23.97

Table VII reports the execution time overheads assuming
1024 PMOs used by each benchmark, broken down into
sources of the overheads, for both our proposed schemes.

10

Hardware-based MPK virtualization suffers from larger over-
heads than Domain Virtualization, in particular primarily due
to TLB invalidation overheads (contributing 98.81% of the
total 114.58%). The average overheads of Domain Virtualiza-
tion average 11.28% (ranging from 12.3–33.32%). Compared
to Hardware-based MPK virtualization, Domain Virtualization
removes TLB invalidation overheads but introduces PTLB ac-
cess latency into the critical path. Since the former dominates
execution time overheads, the trade off works very well. It is
worth noting that the experimental setting is an extreme case
where every access to PMO needs to switch the permission.
If multiple accesses that are clustered together are protected
by one pair of permission switches, the overheads would be
lower.

C. Area Overheads

Table VIII reports the area overhead summary of the two
designs. In hardware-based MPK virtualization, the DTTLB
has 16 entries × 76 bits = 152 bytes. Assuming 1024 domains
and up to 1024 threads per process, DTT is 256KB in
size. There is one 64-bit register per process for the domain
translation table to perform page table walk. TLB and PKRU
are unchanged from MPK. In domain virtualization, PTLB
is 16 entries × 2 bits = 24 bytes. DRT and PT are larger
(16KB and 256KB) but are software data structures. Two 64-
bits registers are added for DRT and PT.

TABLE VIII
AREA OVERHEAD SUMMARY OF TWO DESIGNS

Hardware-based MPK
Virtualization

Domain
Virtualization

New
Parts

1 64-bit register per
core

2 64-bit registers
per cores

16 entries×76 bits=152 Bytes
buffer per core.

16 entries×12 bits=24 Bytes
buffer per core.

Other Changes No Extend 6 bits to each
TLB entry (10% more)

Memory
Usages

256KB memory per
process per DTT

256KB + 16KB memory per
process for DRT and PT

DTT, DRT and PT are software data structures, cacheable,
and are placed in the paging system so they can be swapped
in/out. Only DTTLB and PTLB require dedicated hardware
tables and their sizes are negligible (both less than 0.2KB).

D. Security Analysis

For isolation between threads, both designs provide different
memory views for each thread. The co-located attacker thread
must insert special instruction, SETPERM, to change the
permission to the target PMO for this thread. Then the attacker
thread can read/write data to the target PMO. The insertion re-
quirement simplifies the check on whether the injected code is
malicious to PMOs. Code without SETPERM instruction can-
not read/write data to PMOs. Attacks in code with SETPERM
instructions and code trying to reuse SETPERM instruction
in victim programs can be prevented by implementing call
gates and performing binary inspection and rewriting similar
to ERIM [50]. The isolation between threads is enforced.

For isolation within a thread, we insert SETPERM before
and after every PMO accesses or every PMO data structure
insert/delete operation, which gives a small window for mem-
ory access to a PMO within enabling and disabling pairs.
SETPERM is implemented such that it is always followed by
a memory fence. All memory accesses are finished before
SETPERM, the instruction that enables permission to a PMO.
So earlier memory accesses cannot read/write this PMO.
Another SETPERM instruction disables permission to a PMO.
Temporal memory safety is enforced within a thread. Attackers
may exploit vulnerabilities in the code in the middle of a
pair of the enabling and disabling instructions. However, the
vulnerabilities and attacks are limited to this PMO and other
enabled PMOs rather than all PMOs. For each thread, pro-
grammers can specify pair-wise interactions between PMOs.
Any time, at most two PMOs are enabled. So the vulnerabil-
ities and attacks are limited to at most two PMOs.

VII. RELATED WORK

MERR [60] proposed attach and detach primitives for PMOs
to improve security between processes, which we build on in
this paper. Another branch of papers enable more efficient
memory encryption for persistent memory [5], [6], [13], [61].
There is a rich set of papers in literature covering other aspects
of persistent memory, including but not limited to, memory-
mapped files [14], [52], file system [15], [17], [58], [59],
physical organization [3], [4], persistency models [2], [15],
[28], [40], [46], [49], [52], logging [45], checkpointing [18]
and GPU [33].

Software-fault isolation techniques (SFI) [43], [53] create a
separate protected memory region by instrumentation at every
memory access instruction. This ensures that the instrumented
instruction can only access the designated memory segment;
SFI incurs large overhead. ISboxing [16] separates address
space to allow untrusted code to access only a 32-bit address
space. The available address space reduction could limit prac-
tical usage of NVM. Jang et al. [25] propose to provide a
heterogeneous isolated execution.

In the hardware aspect, the hardware approaches based on
hardware page protection [7], [8], [12], [32], [35] support
memory isolation and provide near zero overhead within a
component. But switching between components still needs
to switch to kernel mode, which incur substantial overhead.
Frassetto et al. [19] try to provide in-process memory isolation
which incurs high overhead to support many isolated domains.
CHERI’s [56] security hinges upon recompiling all external li-
braries rather than the application itself. However, our scheme
works even for vulnerable libraries by limiting accesses (vul-
nerabilities) of libraries to the application. CODOM [51] needs
dramatic changes to the hardware.

Hodor [20] provides isolated user-space libraries using MPK
to improve the throughput and latency. Burow et. al [9] survey
several shadow stacks implementations and propose a shadow
stack implementation with MPK to reduce the shadow stack
overhead.

11

ERIM implements call gates and binary rewriting and
inspection to mitigate WRPKRU reusing by the attacker.
libmpk [39] presents a software virtualization of MPK to
support more domains. It incurs large overhead as the previous
section has shown.

VIII. CONCLUSION

This paper proposes two architecture solutions to enable
efficient intra-process isolation to enable domain-based PMO
protection. The first solution, hardware-based MPK virtual-
ization, augments MPK to remove the limit on the number of
domains. The second solution, hardware-based domain virtu-
alization, foregoes MPK and leverages some newly introduced
mechanisms to avoid the large TLB invalidation overhead of
the first method. The experiments show that the two solutions
provide much reduced runtime overhead compared to the
previous solutions. Even in the extreme case (permission
switches for every PMO access), the Domain Virtualization
method is subject to less than 24%, over 50× reduction of the
overhead of a previous state-of-the-art software solution.

ACKNOWLEDGEMENT

We thank all the anonymous reviewers whose feedback is
helpful for improving the final version of the paper. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1900724, CCF-1525609,
CNS-1717425, CCF-1703487, and Office of Naval Research
(ONR) under grant No. N00014-20-1-2750. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF or ONR.

REFERENCES

[1] H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237–2251, 2010.

[2] M. Alshboul, J. Tuck, and Y. Solihin, “Lazy Persistency: a High-
Performing and Write-Efficient Software Persistency Technique,” in
Proc. of the International Symposium on Computer Architecture, 2018.

[3] A. Awad, S. Blagodurov, and Y. Solihin, “Non-Volatile Memory Host
Controller Interface Performance Analysis in High-Performance I/O
Systems,” in Proc. of the International Symposium on Performance
Analysis of Systems and Software, 2015.

[4] A. Awad, S. Blagodurov, and Y. Solihin, “Write-Aware Management
of NVM-based Memory Extensions,” in Proc. of the International
Conference on Supercomputing, 2016.

[5] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
Shredder: Zero-Cost Shredding for Secure Non-Volatile Main Memory
Controllers,” in Proc. of the International Symposium on Architecture
Support for Programming Language and Operating Systems, 2016.

[6] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: a Low-
Overhead Access Obfuscation for Trusted Memories,” in Proc. of the
International Symposium on Computer Architecture, 2017.

[7] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis, “Dune: Safe user-level access to privileged {CPU}
features,” in Presented as part of the 10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12), 2012, pp.
335–348.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments.” USENIX Associa-
tion, 2008.

[9] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 985–999.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lations,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011, pp. 52:1–52:12.

[11] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu, “Efficient support
of position independence on non-volatile memory,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 191–203.

[12] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-grained
execution units with private memory,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 56–71.

[13] S. Chhabra and Y. Solihin, “i-NVMM: A Secure Non-Volatile Main
Memory System with Incremental Encryption,” in Proc. of the Interna-
tional Symposium on Computer Architecture, 2011.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM Sigplan Notices, vol. 47,
no. 4, pp. 105–118, 2012.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 133–146.

[16] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security.
ACM, 2015, pp. 555–566.

[17] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems,
2014.

[18] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient Check-
pointing of Loop-Based Codes for Non-volatile Main Memory,” in
Proc. of the International Conference on Parallel Architectures and
Compilation Techniques, 2017.

[19] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “{IMIX}:
In-process memory isolation extension,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 83–97.

[20] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor: Intra-process isolation for high-throughput
data plane libraries,” in 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 2019.

[21] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[22] Intel, “Intel 64 and ia-32 architectures software developer’s manual.”
https://software.intel.com/en-us/articles/intel-sdm, online; accessed 11
November, 2019.

[23] A. R. Intel, “Persistent memory programming,” http://pmem.io/.
[24] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,

Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[25] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity gpus,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
455–468.

[26] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barri-
ers for multicores,” in Proceedings of the 48th International Symposium
on Microarchitecture. ACM, 2015, pp. 660–671.

[27] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. Lee,
R. Sasaki, Y. Goto, K. Ito, T. Meguro et al., “2mb spin-transfer torque
ram (spram) with bit-by-bit bidirectional current write and parallelizing-
direction current read,” in 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. IEEE, 2007, pp. 480–617.

[28] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” ACM SIGPLAN
Notices, vol. 51, no. 4, pp. 399–411, 2016.

[29] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 2017, pp. 437–452.

12

https://software.intel.com/en-us/articles/intel-sdm
http://pmem.io/

[30] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating stt-ram as an energy-efficient main memory alternative,” in 2013
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2013, pp. 256–267.

[31] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE micro, vol. 30, no. 1, pp. 143–143, 2010.

[32] H. Lee, C. Song, and B. B. Kang, “Lord of the x86 rings: A portable
user mode privilege separation architecture on x86,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1441–1454.

[33] Z. Lin, M. Alshboul, Y. Solihin, and H. Zhou, “Exploring memory
persistency models for gpus,” in Proc of International Conference on
Parallel Architectures and Compilation Techniques, 2019.

[34] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast and flex-
ible testing framework for persistent memory programs,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2019, pp.
411–425.

[35] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1607–1619.

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Acm sigplan
notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[37] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in ACM SIGARCH
Computer Architecture News, vol. 45, no. 1. ACM, 2017, pp. 135–148.

[38] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[39] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel {MPK}),” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 241–254.

[40] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 3. IEEE Press,
2014, pp. 265–276.

[41] Riku, Antti, Matti, and N. Mehta, “The heartbleed bug,”
http://heartbleed.com, 2014.

[42] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[43] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee,
K. Schimpf, and B. Chen, “Adapting software fault isolation to con-
temporary cpu architectures,” 2010.

[44] H. Shacham et al., “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86).” in ACM conference on
Computer and communications security. New York,, 2007, pp. 552–
561.

[45] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017, pp. 178–190.

[46] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 175–186.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in 2013 IEEE Symposium
on Security and Privacy. IEEE, 2013, pp. 574–588.

[48] Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman
& Hall/CRC, 2015.

[49] Y. Solihin, “Persistent memory: Abstractions, abstractions, and abstrac-
tions,” IEEE Micro, vol. 39, no. 1, pp. 65–66, 2019.

[50] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Dr-
uschel, and D. Garg, “{ERIM}: Secure, efficient in-process isolation
with protection keys ({MPK}),” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1221–1238.

[51] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“Codoms: Protecting software with code-centric memory domains,” in
2014 ACM/IEEE 41st International Symposium on Computer Architec-
ture (ISCA). IEEE, 2014, pp. 469–480.

[52] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
vol. 39, no. 1. ACM, 2011, pp. 91–104.

[53] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5. ACM, 1994, pp. 203–216.

[54] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2017, pp. 800–812.

[55] T. Wang, S. Sambasivam, and J. Tuck, “Hardware supported permission
checks on persistent objects for performance and programmability,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 466–478.

[56] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[57] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri
capability model: Revisiting risc in an age of risk,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA). IEEE,
2014, pp. 457–468.

[58] J. Xu and S. Swanson, “NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories,” in 14th USENIX
Conference on File and Storage Technologies (FAST 16). Santa
Clara, CA: USENIX Association, 2016. [Online]. Available: https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[59] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B. D.
Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-tolerant non-
volatile main memory file system,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017.

[60] Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving security of persistent
memory objects via efficient memory exposure reduction and random-
ization,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 987–1000.

[61] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 479–492.

13

https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

	Introduction
	Background
	Intra-Process Isolation Support
	Intel Memory Protection Key
	Persistent Memory Programming Support

	Threat Model
	Design
	Protection Goals
	Number of Protection Domains
	High-Level Design
	Hardware-Based MPK Virtualization
	Hardware-Based Domain Virtualization

	Evaluation Methodology
	Evaluation
	Single-PMO Results on WHISPER
	Multi-PMO Results
	Area Overheads
	Security Analysis

	Related Work
	Conclusion
	References

