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Abstract—This paper presents an effort for overcoming the
complexities of program optimizations on SW26010, the hetero-
geneous many-core processor that powers Sunway TaihuLight,
the world top one supercomputer. The solution centers around a
precise, static performance model for modern many-core proces-
sor. Through a careful design that leverages the special properties
of SW26010 and an effective treatment to massive parallelism, the
model achieves a high accuracy, showing less than 5% average
errors in estimating program execution performance. The precise
performance model opens many opportunities for analyzing
and guiding code optimizations. The paper demonstrates the
usefulness by revealing a series of insights on the effects of
some important code optimizations on SW26010. Moreover, it
demonstrates that with such a precise performance model, it is
feasible to replace empirical auto-tuning with static auto-tuning
for optimizing regular loops on heterogeneous many-core systems.
Such a replacement speeds up the tuning process by as much as
a factor of 43 while keeping the tuning quality loss below 6%.

I. INTRODUCTION

This paper presents our experience in building and exploit-
ing precise architecture performance models on SW26010,
the processor that makes Sunway TaihuLight the current top
one supercomputer in the world, boasting a 125-PFLOPS
double-precision peak performance, a 93-PFLOPS sustained
LINPACK performance, and a 6.05 GFlops/W performance
per Watt [1].

As a customized heterogeneous many-core processor,
SW26010 is able to offer 3.06 TFLOPS double-precision
floating-point performance and impressive power efficiency
(10 Gflops/W). The design, on the other hand, complicates
programming on SW26010. For instance, the main computing
elements of SW26010 feature a cache-less design, and rely on
programmers for data locality through careful, explicit data
movements from the main memory to its on-chip scratchpad
memory. It supports multiple methods for data loading and
storing, including DMA, direct data transfers across registers,

and normal “ld/st”. Unlike GPU-like commonly seen many-
core processors, all the cores on an SW26010 are independent
computing units rather than forming some SIMD-like groups
(e.g., warps on GPUs). For these features and flexibilities, a
full capitalization of SW26010 could be tremendously benefi-
cial, but at the same time, it is dauntingly difficult for common
programmers to achieve.

A high-level programming model (SWACC) and a threading
library (Athread) have been introduced to help. With them,
programmers can write high-level code more easily. However,
making the code efficient remains difficult. Built on Rose
Compiler [2], the source-to-source SWACC compiler, plus
the native compiler, contains a rich set of optimization tech-
niques; however, the default optimizations by these compilers
often leave a large room for improvements. Finding the best
optimizations through empirical search is a time-consuming
process given the complexities and flexibillities brought by
SW26010.

Existing researches on Sunway [3]-[5] has mainly focused
on accelerating a specific application by best utilizing the
newly-introduced architecture features and the unprecedented
parallelism. However, insights on the applications’ perfor-
mance and the interplay with underlying architecture are rarely
revealed. For instance, optimizations such as data structure
transformation (e.g. AoS to SoA) and double-buffer have been
adopted, but why they give the amount of benefits and what
upper-bound speedups they can ultimately provide remain not
well understood.

The goal of this work is to build a precise performance
model for SW26010 to provide insights and assistance to
performance optimizations on SW26010. Specifically, it tries
to provide a way to reveal what optimizations are benefi-
cial, to analyze how much improvements the optimizations
could yield, and to guide code tuning and optimizations on
SW26010.



There have been many efforts in building up hardware
performance models, with several recent ones focused on
massive parallel architectures [6]-[8]. They give us insights,
but do not directly fit our needs, for two reasons. First, most
of the models (e.g., [6]) still require actual executions to
collect some metrics (e.g., cache miss ratio, memory instruc-
tion counts, etc). Such needs limit the models in helping
address the main drawback of empirical auto-tuning, being a
time-consuming process. Second, they, especially those using
only static code properties, are still subject to 10% to 23%
performance estimation errors [8]. Such a level of accuracy
limits their usefulness in guiding code optimizations.

In this work, we show that it is possible to create a
static performance model for SW26010 with an average 95%
accuracy. The success comes from the careful modeling of
SW26010 on various data accesses and their interplay with
computations and a simple clean treatment to the massive
parallelism.

We apply the performance model in static tuning, which as-
sesses the quality of an optimization based on the performance
model rather than empirical performance measurement. We
experiment with loop tiling and unrolling on regular loops, and
compare the results with those from empirical auto-tuning. Our
results show 1.8X-3.8X program performance improvements,
which are within 6% performance loss compared to that by
empirical auto-tuning. Meanwhile, the enabled static tuning
reduces the tuning time by up to 43X, thanks to its avoidance
of the many profiling runs required by the empirical tuning
method.

Although performance models have been used in guiding
code optimizations before, we have not seen such success of
static auto-tuning purely on static performance models. The
results validates the usefulness of the precise performance
model, and at the same time, points out a promising direction
for accelerating code optimizations on modern heterogeneous
many-core systems.

Although this work concentrates on SW26010, some in-
sights are potentially beneficial for other modern many-core
optimizations, such as the methods of analyzing memory
behavior of many-core architecture and memory/computation
overlapping, the feasibility and promise of performance
model-based static (auto-)tuning, and so on.

Overall, this work makes the following major contributions:

« It builds a static performance model for SW26010 that
gives an average 95% accuracy.

« It shows the usefulness of the precise performance model
in improving the understandings on the effects of program
optimizations.

o It demonstrates that with such a precise performance
model, it is feasible to replace empirical auto-tuning
with static auto-tuning for optimizing regular loops on
heterogeneous many-core systems.

II. THE SW26010 PROCESSOR AND PROGRAMMING
MODEL

The TaihuLight [1] is equipped with 40,960 SW26010
processors, taking the top place in the latest TOP500 lists since
June 2016. This section presents the architecture of SW26010
processor and its current programming model.

A. The SW26010 Processor Architecture

Figure 1 shows the overview of SW26010 architecture.
Each processor is composed of 4 core-groups (CGs). Each
CG has 1 management processing element (MPE), 64 com-
puting processing elements (CPEs) and a memory controller
(MC). Each CG executes independently and four CGs are
connected through a crossbar network on chip (NoC). The
whole processor can provide a peak double-precision floating-
point performance of 3.06 TFlops with 136 GB/s hardware
memory bandwidth.
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Fig. 1. An overview of SW26010 many-core processor architecture

The MPE is a complete out-of-order core that has a con-
ventional 2-level cache system. In practice, it is used for
communication and management. Each CPE contains a 64 KB
Scratchpad Memory (SPM). The SPM is designed with an
SRAM and configured as a user-controlled in-core memory.
The address space of SPM is separated from that of DRAM,
and programmers have to explicitly move data onto or out of
the SPM. Each CPE also contains two execution pipelines:
pipeline 0 is responsible for floating point operations, DMA,
and so on, while pipeline 1 is for ”1d/st” operations, conditional
branching, and others. Simple inter-pipeline out-of-order exe-
cution is supported by the CPEs.

The CPEs are organized as an 8 by 8 mesh. Every two rows
of CPEs are connected with the memory controller through one
data bus. SW26010 provides two different ways for CPEs to
access main memory. The first is to move data between main
memory and SPM through the dedicated DMA engine, which
is referred as a DMA request. The programmer may specify a
large (no larger than the SPM capacity) amount of data in one
DMA request; the DMA engine transfers the requested data in
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Fig. 2. Examples of the relations between Memory Requests (MR) and the
needed Memory Request Transactions (MRT). All the three examples apply
to DMA while only the middle one applies to Gload, because Gload can only
request up to 32 bytes.

128-Byte blocks. The second is to move data between main
memory and CPE registers with normal “1d/st” instructions,
which is referred as a Gload request. The Gload requests
support up to 32-bytes data transfer within one request.

On cache-based architectures, the main memory is accessed
in the granularity of cache lines. However, the CPEs of
SW26010 are not equipped with cache system. They access
the main memory in the unit of DRAM transaction. As a result,
the occurred memory transactions actually reflect the effective
DRAM throughput.

Noted that as data are transferred in blocks, some of the
memory bandwidth has to be wasted if a block contains
both useful and useless data. Figure 2 illustrates the relations
between memory requests (MR) and the underlying memory
request transactions (MRT) in several scenarios.

B. The Programming Model

During a program execution, one thread occupies one CPE
and programmers can launch up to 64 threads per CG to
maximize the usage of CPEs. Athread is a low-level interface
for setting up threads on SW26010, akin to the POSIX
Pthread library. The Sunway OpenACC (SWACC) is the high-
level programming model for Sunway TaihuLight, focusing
on data parallelism. The SWACC compiler is a source-to-
source compiler. It supports the OpenACC2.0 specification,
and automatically converts annotated programs into low-level
Athread library calls (as shown in Figure 3).

The SWACC provides two key abstractions, the data decom-
position and the SPM data placement. The data decomposition
represents the number of data elements for each CPE, as well
as the total number of CPEs in use. The SPM data placement
dictates what specific data shall be put into and out of the SPM.
There are three related intrinsic operations, copyin, copyout,
and copy, which respectively indicate the data to be copied
into SPM, to be copied out from SPM, or to be copied in
both directions.

Taking Vector-Add (Figure 3) as an example. The source
code indicates arrays A, B and C are to be copied into SPM.
The SWACC compiler distributes the workload to the CPEs
along dimension ¢ (outer-most loop) and each thread performs

Source Code

int A[1024][1024];

int B[1024][1024];

int C[1024][1024];

#pragma acc parallel loop \
copyin(B, C) copyout(A)
for(i =0;i<1024; i ++) {

for(j = 0; j < 1024; j++) {
Alill1 = Blil01 + CLIGL;

MPE Code CPE Code

__SPM_local int SPM_A[1][1024];

__SPM_local int SPM_B[1][1024];

__SPM_local int SPM_C[1][1024];

void

CPE_kernel(args) {

for(i=CPE_id; i < 1024; i +=CPE_num) {
dma_get(&B[i][0], SPM_B, 4096);
dma_get(&C[i][0], SPM_C, 4096);
for(j=0; j<1024; j ++) {

SPM_A[0][j] = SPM_B[O0][j] + SPM_CIO](j;

} /lj-loop

dma_put(SPM_A, &Ai][0], 4096);
}} fi-loop

Fig. 3. The workflow of the SWACC compiler

CPEs_spawn(CPE_kernel, args);

Basic
Compiler

all the computation throughout dimension j. Furthermore, the
data composition is pre-computed and statically assigned to
each CPE according to its core-id. In this example, the active
CPE number is 64 = min(1024, CPEs per CG), and each
CPE is responsible for a sub-region of 12% % 1024 and needs
such an amount of data. In the meantime, SWACC introduces
a critical tile intrinsic. Here, “tile” differs from loop tiling. It
does not do loop tiling, but decides the data copy granularity.
In this vector-add example, without an explicit indication of
tile, each CPE computes along dimension ¢ in a round-robin
way, which means the copy granularity equals 1024 elements.
However, if we apply tile(j : 32) to the inner loop, the arrays
are copied to SPM at a granularity of 32 elements. If we apply
tile(i : 32) to the outer loop, each CPE copies the array at a
granularity of 32 x 1024 elements. In the latter case, the total
number of CPEs that actively involve in the executions of the
program (denoted as #active_C'PEs) would equal % =
32. It is because the tile intrinsic decides that each CPE has
to process 32 consecutive data elements along the ¢ dimension.

The workflow of SWACC compiler is also shown in Figure
3. It converts the SWACC programs to the MPE and the
CPE source code, readable for programmers. The MPE source
code controls the MPE-CPE interactions and task concurrency,
and the CPE source code controls data transfer, the SPM
allocation and the CPE calculation. For consecutive data copy,
the SWACC generates one DMA call. As for stride data copy,
it generates several DMA calls, with each corresponding to
a consecutive chunk of data. Finally, with the help of the



low-level compiler of SW26010, the converted source code
is compiled into executables. From the CPE code in Figure 3,
we can conclude that the programs for SW26010 architecture
are usually composed of 3 parts, data copy to SPM, execution
(both computation and Gload requests), and data copy to
memory.

III. THE STATIC PERFORMANCE MODEL

This section describes the precise static performance model
we have built for SW26010. The model, built on the SWACC
programming model, is the key component for evaluating
different program optimizations as well as enabling the static
auto-tuning for SWACC compilers. For typical SW26010
applications, most computations are usually put into some
CPE kernel functions, which are the focus of optimizations
and hence the focus of the performance modelling.

The performance model predicts the execution time of
application kernels running on CPEs of SW26010. Its design
features a simple yet effective treatment to massive parallelism
through two introduced concepts (memory request parallelism
and virtual grouping), a careful modeling of the various data
accesses and their overlapping with computations.
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Fig. 4. A typical SWACC application execution process in the perspective
of virtual grouping. Figure (a) refers to Scenario 1 (Section III. A) in which
computation time is longer than memory access time, while figure (b) refers
to Scenario 2. The height of each colored block represents MRP, which is the
capacity of one virtual group, and the number of colored blocks represents
the number of virtual groups.

A. Introduction to MRP and the Overlapping Model

The SW26010 processor is an SMP architecture, and unlike
GPUs where threads form SIMD warps, all CPEs execute com-
putation instructions independently, contending for the limited
memory bandwidth. So a key part of an accurate performance
model is to precisely model the memory contentions and the
overlapping between memory accesses and computations.

A major challenge is the massive parallelism and non-
deterministic execution orders of many independent CPEs. We
address it by introducing the concepts of Memory Request
Parallelism (MRP) and virtual grouping. MRP is defined as
the number of memory requests that can be concurrently issued
and served among the simultaneous memory requests; virtual
grouping refers to the MRP CPEs that their threads can issue
memory requests at the same time and the requests are served
by the DRAM engine equally. After a virtual group of CPEs
win the memory contention, they are able to continue the

subsequent computations, and another virtual group of CPEs
gets into the memory access.

MRP and virtual grouping significantly simplify the mod-
eling complexities due to the massive non-deterministic par-
allelism of many independent CPEs. Our experiments (Sec-
tion V) show that the simplification introduces little inac-
curacy. With them, it becomes easier to analyze memory
contentions among CPEs and models the overlapping effect
between memory accesses and computations. The memory-
computation overlaps are regarded to happen between the
memory accesses by one virtual group and the computations
by other virtual groups.

To accurately calculate the MRP, we must be aware of the
memory bandwidth and the MRT (i.e., the number of memory
request transactions as explained in Section II-A). Rather than
calculating the requested data size, we calculate the number
of requested memory transactions as it is a much more precise
approximation for memory throughput.

As described in Section II-B, a typical execution process
on SW26010 can be divided into three parts, copying data
to the SPM (via DMA), doing the computations, and copy-
ing data from the SPM (via DMA). Take the process in
Figure 4 as an example. Active CPEs are partitioned into
NG = #“C%ﬁg% groups. The first group completes the
memory access in a period of Req_Latency while the last
group completes in a period of Req_Latency x NG. In
our model, Req_Latency (the blue block in Figure 4) is
a function of MRT and baseline latency (Equ 11) and the
memory bandwidth should be considered in calculating NG
(Equ 9). During the interval of (NG — 1) x Req_Latency,
the first group is able to issue the subsequent computation.
Comparing the computation time 7¢y,, and the interval
(NG — 1) x Req_Latency, we can categorize the execution
process into 2 scenarios.

1) Scenario 1: (NG — 1) x Req_Latency < Teomp: As
shown in Figure 4(a), when the last virtual group completes
copying data to SPM, the first group is still in the computation
phase. The computation time is only partially overlapped with
the memory copy-in time of NG — 1 groups and there exist
memory idle cycles. When the first group finishes its compu-
tation, the copy-out phase begins. In this case, the overlapping
time T,yeriqp can be denoted as (NG — 1) x Req_Latency
from the viewpoint of CG.

2) Scenario 2: (NG — 1) x Req_Latency > Teomp: As
shown in Figure 4(b), when the last MRP group completes
copying data to the SPM, the first group has already finished
the computation. The computation is fully overlapped with
memory access. When the last MRP group completes copying-
in data, the first group begins copying-out data to main
memory. In this case, there is no memory idle cycles. The
overlapping time Tj,yeriqp €quals the computation time Tt .

B. Breakdown of Total Execution Time

As a whole, the execution time T}, of a program can
be divided into memory access time 7T;,.,, and computation
time T¢oy,. The memory access time can be further divided



into Gload request time T, and DMA request time Tpas 4.
Combined with the overlapping effect, the predicted total
execution time can be defined as follows:

Ttotul = Tmem + Tcomp - Toverlap (1)
Tmem = Tg + TD]VIA (2)

Teomp represents the time spent on issuing computation
instructions by a single CPE. It is worth noting that as
all CPEs execute the same kernel functions, they typically
exhibit similar lengths of executions. Upon load imbalance,
the longest execution time among the CPEs is used for T¢., ).

C. Gload Request Time (T;;) and DMA Request Time (T'ppra)

The Gload/DMA request time (Ty/ppra) is the sum of
the latency (L) of each request, which is measured with
the number of cycles. If all active CPEs access the main
memory with no contention, this latency equals the baseline
latency, which is a processor-related parameter (as in Table
I). However, given the limited memory bandwidth, some
serializations may occur for the concurrent memory accesses.
Ty para is hence modelled as follows:

reqs

Tg/DIMA = Z maX(Lbasev Lmem_bw,r) 3)

r

#active_CPEs X MRTy pya

mem_bw/Freq/Trans_size

“

Lmem_bw,g/DMA =

Req_sizeg/ppra
Trans_size

MRTy/pya=1 (%)

In Equation 3, L.s. represents the baseline latency of
memory instructions and L,epm_pw,» represents the serving
duration if memory bandwidth is fully utilized. In Equtions 4
and 5, the M RT;,ppr4 denotes the MRT of one Gload/DMA
request of a single CPE. Gload request is generally regarded
as the smallest granularity of memory access and it is able to
support up to 32 bytes. As a result, the Gload request size
(Req_sizey) is much smaller than the memory transaction
size and thus M RT} is usually equal to 1. On the contrary,
DMA request size (Req_sizepasa) is much bigger and thus
M RTpara usually surpasses 1. Req_sizeppra can be easily
calculated from SWACC copy intrinsics. Under SWACC pro-
gramming model, we regard the copy of all arrays in one copy
intrinsic as one request. It is because each CPE halts at the
last DMA instruction and waits for the completion of all the
prior DMA requests. This is the procedure enforced (through
code generation) by the SWACC compiler. Underlying data
layout has to be taken into special considerations for stride
DMA transfers. In such a scenario, the DMA request leads to
more transactions than actually requested. It is worth noting
that, Gload requests are typically very costly, because only a
small portion of the memory bandwidth is utilized.

D. The Computation Time, T,omp

T.omp represents the computation time of one CPE. T,
is calculated through the analysis of the compute instruc-
tions retired and Instruction Level Parallelism (ILP). The
ILP refers to the pipeline effect of compute instructions in
Pipeline O (shown in Figure 1). In our model, the compute
instructions contain the floating-point, fix-point instructions
and SPM access instructions. Different types of compute
instructions may have different latencies as Table I shows.
The cache-less architectural design of SW26010 helps avoid
most non-determinism in instruction latency, making accurate
estimations of ILP possible. The computation time (Ttomp) is
modelled as follows

comp_inst_type Ly x #t

t
6
avg_ILP ©

Tcomp =

In Equation 6, the latency of type ¢ of compute instructions
(Ly) might be different, as listed in Table I. Programmers
are assumed to be aware of the computation domain size and
thereby the upper bound of each loop in the SWACC kernels
is able to be figured out in advance. The native compiler
annotates elaborately on the assembly code, including the
predicted issue cycle of each instruction, the instruction de-
pendency and the code basic-blocks. The number of compute
instructions retired (#t) can be counted through an analysis
of the assembly code and assembly annotations are currently
checked by programmers. Instruction level parallelism (I LP)
regards the pipelined compute instructions. For the consecutive
floating point instructions with no dependency, they can be
fully pipelined and the ILP can be as many as 8 !, as in
Table I. The average ILP (avg_ILP) can then be calculated
by counting the predicted execution time of each basic block.

E. The Overlapping Time, Tyyeriap

The overlapping time (Tyeriqp) between memory accesses
and computations is the key component for performance
modelling. The formulas are as follows:

To'uerlap = min(TCO'mpa TDI\JA_m)erlap + T _overlap) (7)
T _ LI VY ! )X,
g/DMA_overlap — NGg/D]\{A #g/DMA_reqs g/D];IA
(®)
active_CPE's
NGypma=I——5y —1 C)]
MRP;/prra

Lavg_g/D]WA X mem_bw

MRPy prpa = (10)

Freq x Tran_size X avg_MRTy,ppra

Lavg_g/pva = Lbase + (avg_MRTy ;ppra — 1) X Adelay  (11)

>"" MRTpaa

avg MRIpaa = #DMA_reqs

12)

In Equ 10 and 11, avg_M RTy is 1, as discussed in Section
I-C.

To better explain them, we reinterpret Figure 4 with the
terms in equations. #DM A_reqs equals 2 with the first
representing the copy-in request and the second representing

IThe div/sqrt instructions are only partially pipelined, for simplicity, we do
not consider the pipeline effect of these two kinds of instructions



TABLE I

THE SUMMARY OF MODEL PARAMETERS

Input Parameters Definition Source
1 #active_CPFEs # CPEs in use oSec 1I-B
2 #g_reqs # Gload requests oxSec ITI-C
3 #DMA_reqs # DMA requests oSec II-C
4 #c_inst # compute instructions retired *Sec II1I-D
5 avg_ILP avg # pipelined compute instructions *Sec [1I-D
6 mem_bw memory bandwidth per Core Group 32 GB/s
7 Freq SW26010 processor freq 1.45 GHz
8 Trans_size DRAM transaction size in bytes 256 byt652
9 Adelay extra delay by one transaction request | 50 cycles
10 Lpase baseline latency of memory access 220 cycles
11 Ltioating floating point operation latency 9 cycles
12 Lyized fixed point operations latency 1 cycle
13 Lspm SPM access latency 3 cycles
14 Liv/sqrt divide and sqrt operation latency 34 cycles
Output Parameters Definition Source
1 Tiotal Total execution time Equ 1
2 Tonem Memory access time Equ 2
3 Ty/Drma Gload requests time Equ3-5
4 Teomp Computation time Equ 6
5 Toverlap Overlapping time Equ7-12
6 #MRTy pyma Gload/DMA request transactions Equ 5
7 #MRP, /pra Gload/DMA request parallelism Equ 10
8 #NGy/prma Number of Gload/DMA MRP groups Equ 9

ot source code analysis; *: assembly code analysis

the copy-out request. As in Equ 7, either the whole com-
putation (Figure 4(b)) or a portion of the memory request
time (Figure 4(a)) is overlapped. DMA requests are served
concurrently with computation, except for first virtual group
(the first term of Equ 8), and the last DMA request (the second
term of Equ 8). The request latency (Lgvg_para, the blue block
of Figure 4) is the baseline memory access latency plus an
extra delay as in Equ 11.

Further, M RP refers to the one virtual group size and
#M RP requests can fully utilize memory bandwidth during
the period of request latency. The reflection of them in Figure 4
is that one virtual group (MRP CPE threads) behaves in lock-
step way. Finally, NG represents the number of virtual groups,
and the calculation is as in Equ 9.

F. Limitations

Our performance model does not consider the usage of
MPE. As most computations have been offloaded to the
CPEs, MPE is primarily responsible for launching the kernels.
The MPEs in SW26010 can achieve only 1/65 of the peak
computation performance; the benefit of using MPE is hence
negligible. In addition, the effect of the instruction-cache has
not been taken into consideration yet.

The effect of executing branch instructions, which may
lead to imbalanced workload, is not modelled in details.
Combination with some lightweight profiling is a feasible way
to complement the static model to address the complexity.

2While DMA requests for transferring data from main memory to CPEs
are in 128-Byte unit (physical memory transaction size) , the memory page
hit rates are often too low to fully use the memory bandwidth, hence the
256-Byte minimum transaction size is suggested by the architects and used
in our model as shown in Table I.

Currently we pick the most time consuming branch for the
computation cost analysis.

IV. ANALYSIS OF PROGRAM OPTIMIZATIONS ON
SW26010

One practical usage of the performance model is directly
analyzing the effects of some optimizations. We discuss it with
three examples. We will show that the analysis based on the
performance model leads to some conclusions contradicting
prior optimization guidelines.

1) The Effects of DMA Request Granularity: Prior op-
timization guidelines [4] suggests that enlarging the DMA
granularity and using the SPM as much as possible can
obtain better performance. However, our model shows that
decreasing the DMA granularity is actually better as long
as DM A_req_size > Trans_size. According to our over-
lapping calculation equation (Equ 8), when each DMA re-
quest gets smaller and hence the number of DMA requests
increases, the total overlapping time increases, and thereby
the total execution time decreases (Equation 1). The overall
time saving brought by using smaller DMA request granularity
is formulated as follows (without considering the change of
T,, NG):

1 1
#DMA_1 #DMA_2

where, #DM A_1 is the numbers of DMA requests before
reducing the DMA request granularity, and #DM A_2 repre-
sents the number after.

2) The Effects of Double-Buffer Optimizations: The double-
buffer optimization leverages two data buffers, one for the
current computation and the other to hold the data being
transferred with DMA. It is a popular memory and compu-
tation overlapping strategy for many-core architectures (e.g.,
the asynchronous memory transfer in CUDA [9]).

Figure 5 illustrates the workflow of double-buffer opti-
mization. The performance improvements actually come from
issuing subsequent computation earlier, which means the
Tyveriap 18 further enlarged. However, the maximum possible
performance improvement is the non-overlapped DMA time
of one virtual group, as shown in the left of Figure 5. In

ATsmatler_DMA = ( ) X Tpara (13)
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Fig. 5. The illustration of double-buffer optimization according to the analysis
of the performance model. For the left part (Scenario 1 in Section III. A), the
benefit is regarded as the copy-in duration of one virtual group. The right part
(Scenario 2 in Section III. A) implies the double-buffer optimization does not
yield performance improvement.



the worst case, this optimization may bring no performance
improvements, as the right part of Figure 5 illustrates.

The overall time savings by this optimization for SW26010
can be formulated as follows:

ATy, = min( X Tpaa, Teomp — Toverlap)a (14)

Gpma

In a common scenario, the #active_C PE's equals 64 while
the DMA block is significantly larger than 256 bytes, we can
derive from Equation 9 to 11 that NG ps4 = 16, , the benefits
from double buffer is only 1/16 of the Tppra. It means the
acceleration of the whole program can be no better than 1/16.
Section V validates the analysis results through experiments.

3) The Effects of #active_CPEs.: Although using more
active CPEs increases computation performance, our perfor-
mance model indicates that it does not necessarily lead to a
higher overall performance.

Equation 5 shows that when DMA_req_size <
Trans_size, MRTppra always equals 1. Therefore, if the
number of DMA requests increases, more redundant data
would be transferred. This is important when determining
the number of active CPEs. In many programs such as the
WRF dynamics cases in Section V, more active CPEs could
make DM A_req_size smaller than Trans_size. In that case,
reducing #active_CPFEs could help. Considering both the
decrease of Tpara (because of a decrease of #active_ CPEs
in Equation 4) and the increase of T, (because of a increase
of #comp_inst in Equation 6), the overall time savings of
using less active CPEs can be inferred as follows (without
considering the change of T;; and Toyeriap):

ATiess_crEs = Aactive_CPEs X maz(0, Tpapra — Teomp)  (15)

where, Aactive_CPEs is the reduction fraction of
#active_CPFEs. This relation can be used to choose
the appropriate number of active CPEs. From Equation 15,
we can see that the benefit appears only when 1) Tpara
increases with more CPEs used (because of a waste of
memory transactions); 2) Tpara > Teomp in the baseline. It
should be noted that for problems with no waste of memory
transactions on 64 CPEs, using all CPEs gives close-to-best
performance. But in cases such as the WRF dynamics kernels
in Section V, the best performance occurs when less than 64
CPEs are used, which is consistent with the analysis results
by our model.

V. EXPERIMENTS

The experiments consist of three major parts. The first part
evaluates the accuracy of the performance model. We compare
the estimated execution time and wall-clock execution time.
The second part evaluates the benefits for analyzing the effects
of program optimizations brought by the accurate performance
model. The third part reports the observations of the static
auto-tuning powered by the performance model.

A. Experiment Setup

Our experiments use the OpenMP kernels of the Rodinia
benchmark suite [10]. The suite contains both regular and
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Fig. 6. Model prediction on Rodinia benchmark. We made prediction on
the time breakdown of each benchmark. The positive stack values represent
the predicted Teomp, TDMA> Tgioad from top to down, and the negative
stack represents Tyyeriap- Actual and predicted Totq; €xecution times (with
Equation 1) are shown by lines. For simplicity, the actual execution times of
all kernels are normalized to 1.

irregular programs, and covers a wide range of computations
and memory access patterns. Here, irregular means 1) the
memory access pattern is unpredictable so that conventional
blocking techniques cannot be used, or 2) there could be
imbalanced workload among CPEs. Based on the existing
OpenMP implementation, we ported and tuned these bench-
marks on SW26010 platform with SWACC and Athread,
including the optimizations to maximize the usage of SPM
on SW26010 to save memory access overhead. We also ex-
periment on two real-world scientific kernels from WRF [11].

B. Evaluation of the Analytical Model

Figure 6 shows the breakdown of the predicted execution
time of each benchmark, and the error between the predicted
and the actual execution times. The times are all normalized
by the actual execution times.

The average error is 5% and the errors vary across the
benchmarks. The errors are marginal for regular benchmarks.
The data accesses of K-Means, for example, are predictable,
which allows a flexible task/data partition and the avoidance of
Gload operations. The DMA granularity can also be adjusted
to maximize the overlapping of the computation with the
DMA data transfers. Such regularity leads to the near perfect
prediction result.

The max error is 9.6% happening on BFS which is a typical
irregular program. Similarly, memory accesses in B+tree,
leukocyte, and streamcluster are difficult to leverage
SPM. Conventional blocking techniques are invalid on such
cases and thus we cannot move data onto SPM in advance. As
a result, almost all the memory requests are Gload operations,
which dominate the execution time. It is worth noting that the



irregular features can also lead to the imbalanced workload
among CPEs, which is not modelled in detail in this work.
We take the longest execution path during analysis and the
performance model assumes the amount of computation is able
to be calculated in the beginning. The experimental results
demonstrate that irregular computations on such a cache-
less architecture suffer from the overhead of Gload (a waste
of memory transactions) and need further optimizations to
coalesce memory accesses. For some other kernels that are
more amenable for DMA operations (e.g., K-Means, cfd,
backprob), the DMA overlaps the computations substan-
tially.

C. Enabling Analysis of Optimization Effects

1) DMA Request Granularity: As demonstrated in Sec-
tion IV-1, DMA request granularity may affect the mem-
ory/computation overlapping and hence affect the execution
time. Our experiments on the K-Means kernel consider two
scenarios: fixed input data size (Figure 7(a)) and different input
data sizes (Figure 7(b)).

In 7(a), we fix data elements processed by each CPE to 256.
As the granularity of a request becomes smaller, the number
of requests increases. According to Equation 8, the overlap
is positively correlated with #DMA_reqs. Therefore, the in-
creased number of requests causes an increase in overlap time
and hence the overall performance. The whole kernel is accel-
erated by up to 20% when #data elements/DM A request
is reduced from 256 to 32. An interesting discovery is that
when the #data elements/ DM A request decreases to less
than 16, the Gload memory request increases sharply. It
is because the assembly code generated by native compiler
reveals there are additional Gload requests. The cause may
be sophisticated but our model only calculates the number of
global requests based on the native compiler and it can capture
such cases. The total execution time increases according to
Equation 1 and 2.

In 7(b), we fix the granularity to 256. As we increase the
number of the data partition per CPE, the normalized execution
time decreases. Similar to the reason of 7(a), it is because the
number of DMA requests per CPE increases and hence the
overlap time increases.

2) Double Buffering: On the N-body kernel, the double-
buffer optimization shortens the exeution time from 1142us to
1100us, only yields a 3.7% (42us) improvement. Such a small
effect has been qualitatively predicted by our analysis given
in Section IV-2. Figure 8 provides the quantitative prediction
from our performance model. The predicted benefit from
double buffering matches well with the actual, with only a
3.3% error.

3) Proper  #active_CPEs: We  evaluate  different
#active_CPEs on two kernels in a public weather
forecasting application WRF [11] : one comes from the WRF
dynamics and the other from WRF physics. They are
memory-intensive and computation-intensive respectively.
Figure 9 shows the predicted and actual execution time at
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Fig. 7. The effects of varying DMA request granularity. (a) Actual and
predicted execution time at different DMA request sizes. (b) Normalized actual
and predicted execution time at different data partition sizes on a fixed DMA
request size (256 elements). Data partition means the size of workload, and
also infers the number of DMA requests.

Predicted time (us) of optimized version: T,pt=1098.6
(Tco7er=9759 T'pnra=695, Tgloadzoa Toverlap=57]-47 NGprra=8)
Predicted benefits: 1142us (original) - 1098.6us (opt) = 43.4us
Actual benefits: 1142us (original) - 1100us (opt) = 42us.

Fig. 8. Prediction of the benefits of double-buffering optimization

a spectrum of #active_CPFEs, while Figure 10 shows the
breakdown of the actual execution time.
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Fig. 9. The actual and predicted execution time with different

#active_CPEs for WRF Dynamics kernel (left part) and WRF Physics
kernel (right part).

From Figure 9, we can see that for the memory intensive
dynamics kernel, using 48 CPEs outperforms using 64
CPEs by about 10%. The time breakdown of dynamics in
Figure 10 confirms the trade-off between the opposite effects
of using more active CPEs on T,,,,, and on Tpyr4 as our
performance model predicts in Section IV-3. As physics
is computation-intensive, using more active CPEs reduces
overall execution time. Our performance model gives accurate
predictions of the execution time of both kernels as shown in
Figure 9.

When #active_CPFEs surpasses 64, multiple CGs are
used. On one hand, more DMA transaction are wasted if
using more CPEs. On the other hand, the memory bandwidth
and the computation performance increase. To scale programs
to multiple CGs on SW26010 and enable sharing, data is
allocated on cross-section memory, which is evenly (in a



WRF Dynamics WREF Physics
500 1200
= T-comp = T-comp
1 T-DMA — T-DMA

400

900

600

Time (us)
Time (us)

300

32 48 64 128 256
#Active-CPEs

32 48 64 128 256
#Active-CPEs

Fig. 10. Measured time breakdown for WRF Dynamics kernel (left part) and
WREF Physics kernel (right part) when #active_C PFE's varies.

round-robin way) mapped to physical memory associated with
each CG. Our tests show the memory bandwidth of cross-
section is only slightly lower than the local memory. We
believe the reasons are two-fold: 1) Because the bandwidth
of cross-bar Network-on-Chip(NoC) is much larger than that
of transfer engines within the CG, the bandwidth of cross-
bar NoC is not the bottleneck. 2) For memory-bound kernels
(e.g., the WRF dynamics kernels), they are typically bounded
by memory bandwidth rather than latency for the massive
parallelism of the system. Hence in our modelling, memory
bandwidth (mem_bw) in Equation 4 and 10 increases linearly
with the numbers of CGs used. The performance model
appears to work for multiple CGs.

D. Enabled Static auto-tuning

To further validate our performance model and demonstrate
the benefits and the opportunity of static tuning powered
by the model, we set up an experimental static auto-tuner
for selecting the proper tile size (tile on SW26010 is
different from that on conventional architecture, as described
in II-B) and unrolling factor for loop tiling and loop unrolling
optimizations. Our goal is to prove that the static tuning
method can be highly efficient in searching for the optimal
code variant. At the same time, the code variant suggested by
the performance model is also effective in execution.

We use five programs from the Rodinia benchmark suite
that are rich in loops amenable for loop tiling and unrolling.
Table II reports the performance of the tuning results, as well
as the tuning time. The dynamic tuning needs to run the
different versions of the program. The static tuning does not;
its tuning time mostly consists of the compilation time. We
also measure the performance boost compared with default
parameter setting (Speedups in Table II). The compiler used to
generate the code variants for both static and dynamic methods
is based on the Pluto compiler [12].

The search space consists of multiple dimensions: which
loop(s) to tile, which loop(s) to unroll, the tile size of each of
the loops to tile, and the unrolling factor of each of the loops
to unroll. The complete space can be enormous, considering
the combinations of the many loops and the large possible
ranges of tile sizes and unrolling factors. Many studies have

proposed various ways to prune tuning space [13]-[16]. They
are orthogonal to the tuning methods and can benefit both the
static and dynamic methods. In our experiments, we keep the
search space the same for the two tuners for fair comparisons.

The two tuners find the same transformation parameters on
three out of the five programs, and differ slightly on the other
two programs cfd(4%) and backprob(6%) due to some
small performance estimation errors. The code variants they
pick achieve similar speedups over the original code. On the
other hand, the static tuner dramatically reduced the tuning
time (by 26X to 43X.) On lud, for instance, the tuning time
gets shortened from 13.6h to 0.3h. These results indicate the
promise of the performance model-based static auto-tuning for
guiding compilers in code optimizations on SW26010.

To compare against prior hand-tuned work [17], we further
select two kernels (micro_mg0_1 and mcica_subcol_lw) from
WREF Physics. According to their methods, the floating-point
performance are 421 Gflops and 127 Gflops respectively while
our auto-tuning method yields 500 Gflops and 148 Gflops. It
is worth noting that this experiment is set up on one CG,
of which the peak floating point performance is 765 Gflops.
In both methods, the implementations are based on SWACC
while our model leads to a better configuration.

Another concern for auto-tuner is input sensitivity. The
enabled static tuning employs representative inputs (shown
in Table II). Figure 7(b) shows the result of different input
domain sizes. Input size does not affect the accuracy of our
model. The rationale is, on such a software-cache design,
memory access can be precisely modelled although the input

size varies.
TABLE II
SPEEDUPS BY TUNING RESULTS AND TUNING TIME SAVINGS BY THE
STATIC TUNER.

Kernels Data Size .Speedups - Tuning Time
Static | Dynamic Savings
k-means | 3952160%8%32 | 3.77x 3.77x 41.5x
cfd 193474%*4 1.67x 1.74x 40.0x
Iud 1600*1600 2.76x 2.76x 43.6x
hotspot 1024%1024*4 | 2.41x 2.41x 36.2x
backprob 1048576*64 1.84x 1.96x 26.3x

VI. RELATED WORK
A. Performance Models

There have been many previous works on performance
modeling [18] [19]. Many of them follow the thoughts of
first-order analytical model [20], which predicts the total
execution time by summarizing the missing events. Chen and
others [21] extended the model with considerations of the
effects of pending cache hits, data prefetching, and MSHRs.
Other work [22] provides insights to the mechanism of su-
perscalar out-of-order processors by paying extra attention to
the dispatch efficiency and branch efficiency. In a more recent
work [23], the authors try to understand the behaviours of
in-order processors by considering the computation resource
contention and instruction dependency.

However, they all focus on the fine-grained execution
mechanism of cache-based processors and need the runtime



profiling statistics. Moreover, memory level parallelism (MLP)
was believed very low in [23] but in fact is a key factor in
emerging massive parallel architecture. The CPEs of SW26010
access main memory bypassing cache, which makes memory
latency and contention the first order considerations of the
performance. Our model highlights the memory parallelism
and contention among the CPEs.

Recent years have seen increasing interests in performance
modeling of many-core processors. Roofline [24] is a coarse-
grained performance model for multicore architecture. It an-
alyzes the ratio of the computation operation and memory
accesses (arithmetic intensity) and predicts the theoretical
peak performance of a program with the “Roofline” curve.
A prior work [25] demonstrates the effectiveness of the model
for studying the performance bounds of programs on KNL.
Roofline model is, however, not designed to precisely predict
the execution time of the program — which is the objective of
our modelling. For that reason, the subtle effects of some of
the optimizations discussed in the paper cannot be captured
by upperbound analysis by the Roofline model. For example,
when we decrease the DMA request granularity as mentioned
in Section IV-1, the arithmetic intensity does not change but
the overall performance gains. Another example is that fewer
CPEs bring better performance in WRF dynamics cases. Our
model explains these phenomena well. Statistics modelling
[26] don’t need to take much domain knowledge into account,
profiles the runs with varying input parameters and uses the
regressive method to build performance models. The training
takes time and the accuracy is limited by the set of training
inputs. There are also models focusing on the CPU cache
efficiency of loop structure [27], data placement on various
GPU caches [28], the impact of GPU registers/instructions
usage on performance upper bound [8]. The work most
closely related with our model is an analytical model for
GPUs [7]. Two key concepts are introduced: the Memory
Warp Parallelism (MWP) and Computation Warp Parallelism
(CWP). Their model considered the Memory Level Parallelism
(MLP) between warps and the hidden cost through context
switching. A follow-up work [6] has improved the MWP-
CWP model by considering the MLP within a warp, the SFU
contention, the cache effect. Hong and others recently propose
the use of abstract kernel emulations and latency/gap modeling
of resources to help identify the performance bottlenecks
of a GPU program execution, and demonstrate promising
results [29].

Our performance model differs from them in some im-
portant aspects. First, SW26010 architecture is substantially
different from GPUs and the underlying memory access meth-
ods are Gload and DMA. The former is subject to waste of
memory transactions and the latter long latencies. Second,
GPU models focus on memory/computation overlapping in
one Stream Multiprocessor (SM) and different SMs are equally
treated. We treat CPEs equally only for computation model-
ing; for modeling memory accesses and memory/computation
overlapping, we treat all the CPEs as a whole, which helps
accuracy. We further demonstrate the promise of static auto-

tuning empowered by the precise performance model.

B. Auto-tuning

Auto-tuning typically consists of two components. The first
generates code variants in the search/optimization space, and
the second assesses the quality of the variants. All the previous
studies have relied on actual executions of the variants to
do the assessment. To prune the search/optimization space,
some effective approaches have been proposed and applied in
auto-tuning system, such as evolution (or its variants) meth-
ods [13], parallel rank order algorithm [15] and distinct lines
model to measure cache line consumption [27]. Our purposed
performance model greatly speeds up the assessment process
by enabling accurate static predictions of the performance,
and hence successfully enables the performance model-based
static auto-tuning. It complements the various space pruning
methods for accelerating the auto-tuning process.

VII. CONCLUSIONS

In conclusion, this work shows that it is feasible to construct
a static performance model for a cache-less massive parallel
processor SW26010, with an accuracy as high as 95% on
average. The model carefully formulates the performance of
memory behaviors, including contention and computation-
memory overlapping by using a newly-introduced metric MRP.
It employs a simple virtual grouping concept to simplify the
treatment to massive parallelism, which turns out to be quite
effective. It then investigates the opportunities that the precise
static performance model creates for analyzing the effects of
program optimizations. These usages largely lower the barriers
for program optimizations on SW26010, demonstrated by the
insights gained on the case studies on DMA granularity, double
buffering and active CPE number. Compared with dynamic
auto-tuning, our static performance model empowered auto-
tuning speeds up the tuning process by as much as a factor of
43, while keeps the tuning quality loss below 6%.
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