MERR: Improving Security of Persistent Memory
Objects via Efficient Memory Exposure Reduction and
Randomization

Yuanchao Xu
North Carolina State University
Raleigh, North Carolina, USA
yxu47@ncsu.edu

Abstract

This paper proposes a new defensive technique for mem-
ory, especially useful for long-living objects on Non-Volatile
Memory (NVM), or called Persistent Memory objects (PMOs).
The method takes a distinctive perspective, trying to reduce
memory exposure time by largely shortening the overhead
in attaching and detaching PMOs into the memory space.
It does it through a novel idea, embedding page table sub-
trees inside PMOs. The paper discusses the complexities the
technique brings, to permission controls and hardware im-
plementations, and provides solutions. Experimental results
show that the new technique reduces memory exposure time
by 60% with a 5% time overhead (70% with 10.9% overhead).
It allows much more frequent address randomizations (short-
ening the period from seconds to less than 41.4us), offering
significant potential for enhancing memory security.

CCS Concepts « Security and privacy — Systems se-
curity; Hardware-based security protocols; « Hardware —
Non-volatile memory.

Keywords persistent memory objects; memory exposure
reduction; runtime randomization

ACM Reference Format:

Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. MERR: Improv-
ing Security of Persistent Memory Objects via Efficient Memory
Exposure Reduction and Randomization. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS °20), March 16-20,
2020, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3373376.3378492

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378492

Yan Solihin
University of Central Florida
Orlando, Florida, USA
Yan.Solihin@ucf.edu

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA
xshen5@ncsu.edu

1 Introduction

Despite decades of security research, unauthorized mem-
ory reads and writes are still problematic to security. At-
tackers may exploit unauthorized memory writes to cause
memory corruption, that lead to various attacks (e.g., code-
reuse [48, 50, 54], code-injection [46], data-oriented [26] at-
tacks, etc.). Attackers may use unauthorized memory reads
to perform memory disclosure that can be used to defeat
certain security techniques such as address space layout ran-
domization (ASLR). Many techniques have been proposed
to mitigate unauthorized memory reads and writes, includ-
ing Control Flow Integrity (CFI) [2], Code-Pointer Integrity
(CPI) [38], and Data Flow Integrity [5, 14]. However, they
incur large performance overheads when enabled.

In this paper, we propose MERR, a new approach for re-
ducing memory disclosure and corruption vulnerabilities for
data. The key idea is to reduce memory exposure by making
data accessible only when the program needs it by attaching
data to the process address space, while making it inacces-
sible at other times by detaching (i.e. removing) it from the
address space. Detaching data from address space provides
a very strong protection because even virtual memory (VM)
implementation vulnerabilities cannot be exploited by the
adversary. For example, one aspect that enables Meltdown at-
tack [41] is the failure of the VM implementation in enforcing
privilege access check for out-of-order executed instructions.

Several challenges arise when we want to achieve said
protection. One challenge is that supporting the primitives
of attaching and detaching data requires data to be encapsu-
lated and managed by the Operating System (OS), provided
with namespace and permission mechanisms. Currently, an
object that fits the attach/detach model includes memory-
mapped files, which are mapped to and unmapped from the
process address space, allowing process to directly access
file data. With the rise of persistent memory, we expect that
persistent data structures without file backing will also be
commonplace. We will refer to OS-managed data object sup-
porting attach/detach primitives as persistent memory object
(PMO). In this paper, we focus on a PMO that permanently
resides in physical memory, hence no high latency I/O op-
erations are needed to attach it to process address space.
To provide the protection, a process only attaches a PMO

https://doi.org/10.1145/3373376.3378492
https://doi.org/10.1145/3373376.3378492

when it needs to access it, and detaches as soon as it finishes
accessing it.

A key challenge for our strategy of memory exposure re-
duction is the high performance overheads that come with
attaching and detaching a PMO. Traditional memory map-
ping mechanism is exceedingly expensive. When data with
multiple pages is mapped, multiple page table entries (PTEs)
must be initialized by the kernel. For each page, a victim page
is selected, TLB shootdown is initiated, and page fault occurs
on the first access. A TLB shootdown serially interrupts each
core which must acknowledge the TLB invalidation, costing
thousands of clock cycles per core [22]. After mapping, an
access to a recently-mapped page incurs a page fault, that
requires the page fault handler to read a page-size region
from the file and copy it to the mapped page. Many page
faults may occur to populate the memory-mapped region.
Much of the costs also apply to unmapping.

To reduce the expense, we exploit the fact that a PMO
already resides in the physical memory. Thus, with the right
mechanism, page faults are not necessary. To attach a PMO to
process address space, we propose to simply initialize PTEs
to point to the physical memory where the PMO already
resides. However, for a large PMO, initializing many PTEs is
still prohibitively expensive. To avoid this cost, we propose
embedding PTEs into a PMO, if the PMO is larger than a
page. An x86 page table is hierarchical and forms a radix
tree. We propose storing a page table subtree in the PMO
itself. Thus, attaching a PMO requires initializing only one
PTE at the appropriate level to point to the subtree. With
this method, only one PTE is initialized and only one TLB
shootdown is involved. With these optimizations, we reduce
the cost of attaching a PMO such that it becomes feasible
to perform them frequently. For example, we can wrap any
functions that access the PMO with attach and detach.

However, naively embedding PTEs into a PMO violates
process-specific permission semantics in current VM sys-
tem, because it forces permissions to be PMO-specific re-
gardless of the process that attaches it. In order to allow
process-specific permissions for a PMO, we propose a novel
process-specific permission matrix hardware support for
keeping PMO-wide permission. An access is valid when it is
determined to be legal by both the permission matrix and
TLB.

While detached, a PMO is not vulnerable to memory dis-
closure and corruption. However, the adversary can still
target the PMO when it is attached. To improve security fur-
ther, each time we attach a PMO, we can change the virtual
address region where the PMO is attached at each attach
session. We refer to this scheme as PMO space layout random-
ization (PSLR). PSLR makes it harder for attackers to figure
out which address location it must attack, as it frequently
changes. The window in which the attacker must success-
fully probe the system and deploy the attack is limited to the
length of time a PMO is attached.

Overall, this paper makes the following contributions:

1. We propose a new approach to reduce memory dis-
closure/corruption vulnerabilities by reducing mem-
ory exposure time using attachment and detach-
ment of a PMO.

2. We propose a novel architecture support to make at-
tachment/detachment fast by embedding a page ta-
ble subtree into a PMO. This reduces the number of
PTEs to modify and number of page faults to only one.

3. We propose an architecture support for providing
process-specific PMO-wide permission.

4. We take the advantage of frequent PMO attachment
by deploying PMO Space Layout Randomization
(PSLR) which randomizes the location of a PMO at
every attachment session.

We refer to our approach Memory Exposure Reduction
and Randomization (MERR). MERR carries unique benefits.
The reduction in memory exposure reduces the window of
vulnerability in which the adversary can mount an attack.
Furthermore, by wrapping only functions that access the
PMO with attach and detach, the code attack surface is re-
duced to just these functions. By reducing the attack surface
to much smaller code, it is easier to ensure code security,
and the overheads of deploying protection techniques are
only incurred for this code base. In addition, deploying ran-
domization at every attach further reduces the window of
time available to the adversary. The adversary must, within a
single attach/detach session, probe the system and deploy an
attack. Finally, the novel page table subtree and permission
matrix mechanisms can be thought of as enabling technol-
ogy that reduces the latency of attach and detach. In this
paper, we use it to reduce memory exposure time, but they
will likely also open up future uses that rely on it.

Our experiment results using Whisper benchmark suite [45]
indicate that on average, MERR only incurs 10.9% slowdown
while reducing memory exposure by 70% and randomizing
PMO address every 41.4us or less.

The remainder of the paper is structured as follows. Sec-
tion 2 describes background knowledge. Section 3 motivates
the problem tackled in the paper. Section 4 presents our
design. Section 5 describes the randomization technique.
Section 6.1 presents the evaluation methodology. Section 6.2
discusses our evaluation results and findings. Finally, Sec-
tion 9 concludes the paper.

2 Background
2.1 Memory Disclosure and Corruption

Despite decades of security research, memory attacks are still
problematic to security. Memory attacks may be unautho-
rized memory writes (memory corruption) or reads (memory
disclosure). The use of memory-unsafe languages such as
C/C++ contributes to such a situation. A notorious example
memory corruption is buffer overflow, which occurs when

the program misses a bounds check when accessing a buffer,
causing corruption in values adjacent to the buffer. Format
string vulnerability can also be used to cause memory cor-
ruption. Memory corruption may affect the stack region (e.g.
stack buffer overflow), the heap (e.g. heap buffer overflow),
or other regions. It may lead to various attacks, such as code-
reuse [48, 50, 54], code-injection [46] and data-oriented [26]
attacks, and so on. Typical mitigation for memory corruption
is address randomization.

Memory disclosure is a case where memory content is read
or leaked. Various vulnerabilities may lead to this, includ-
ing format string [51] and buffer overread [59]. Memory
disclosure can be used to defeat randomization strategies de-
signed to prevent memory corruption from being exploited.
More recently, Spectre/Meltdown [34, 41] show that memory
disclosure can result even through speculative instructions.

Many techniques have been proposed to mitigate unau-
thorized memory reads and writes, including Control Flow
Integrity (CFI) [2], Code-Pointer Integrity (CPI) [38], and
Data Flow Integrity [5, 14]. However, they incur large perfor-
mance overhead when all of them are enabled. For example,
it was reported that CFI incurs 21% overhead [2] while CPI
incurs 8.4% overhead [38] on average. Applying data flow
integrity to all the data incurs 50%-100% overhead [14].

Static address randomization defenses, e.g., address space
layout randomization (ASLR), can be used as a first line of de-
fense against memory attacks. ASLR works by randomizing
the start address of various segments. However, the effective-
ness of ASLR lies on the assumption that the layout remains
secret. This assumption is often incorrect. Memory disclo-
sure can be used to figure out the location of certain datum,
leading to the disclosure of the random offset. As a result,
newer work proposed re-randomization every certain inter-
val. Unfortunately, re-randomization involves copying entire
memory segments, hence it increases execution time sub-
stantially even when performed every 5 seconds [54]. This
compromises security as the attacker may succeed within
5 seconds (e.g. meltdown can bypass KASLR to read data
successfully within seconds [41]). Therefore, we conclude
that memory attacks are still deeply problematic in terms of
costs to performance.

MERR differs from prior protection mechanisms by de-
taching data (or PMO) entirely from process address space
when the program does not need to access it. MERR provides
stronger protection than merely re-randomizing its location.
On top of that, MERR assigns a PMO to different virtual
memory address each time a process attaches the PMO, with-
out physically relocating/copying data. Note that MERR only
protects data in PMO, so the rest of the address space should
still rely on traditional techniques such as ASLR or KASLR.

2.2 Persistent Memory Programming Support

Non-volatile memories (NVMs), such as Intel Optane DC
Persistent Memory, provides high capacity at low cost, low

idle power, byte-addressability, persistence, and performance
closer to DRAM than SSD or disks [4, 32, 37, 39]. For these
reasons, they are considered a contender for future main
memory fabric.

There are at least two paradigms for using NVM. One
uses it as storage to host a file system, the other uses it
via a new abstraction where a data structure is wrapped
into a persistent memory object (PMO), which allows the
data structure to be hosted persistently in physical memory
without involving a file system. PMOs may combine some
features of a file system (naming, permission, durability, and
sharing) and some features of data structures (pointer-rich,
address space mapping, purely load/store access). In this
paper, we assume the latter.

A PMO may be a container for a data structure that lives
beyond process termination and system reboots. A PMO
requires several properties to be supported: crash consistency
allows a PMO to remain in a consistent state even when
the process that accesses it crashes or system power is lost,
system naming and permission allows a PMO to be found by
processes and the system to manage its use by processes,
attach/detach primitives where a PMO can be attached to
a process address space when needed and detached when
not needed, relocatability where a PMO can be attached at
different parts of a process address space at different times.
A PMO may be implemented as pools [29, 607, 61] and given
a unique identifier. Pools can be organized as a collection.
There is a root object from which all other objects in the
pool can be reached. In this paper, we use the term PMO
as a general concept, and pool as a specific implementation
of a PMO, which may not have all features a PMO should
support.

Object ID: Pool identifier Pool offset

Y
vy
[}
v

32 bits 32 bits

Figure 1. Structure of pool pointer [15, 60, 61]

To support relocatability, each pointer (64-bit) used in a
data structure is split into a 32-bit pool ID (ObjetID) con-
catenated with a 32-bit offset within the pool (Figure 1). To
address a pointer, the base address for the ObjectID is added
to the offset. PMDK [29] and other prior works [17, 60] have
described interfaces for manipulating pools and objects. We
adopt the interface proposed by Wang et al. [60]. It sup-
ports functions for creating pools (analogous to files), ob-
jects within pools, support for persisting objects, and failure-
safety through durable transactions. Table 1 shows a subset
of their interface.

One thing we point out is that pool_open will look for a
pool of the given name. If it exists and if the calling process
has permission to access this pool, this pool is mapped into

Table 1. Pool APIs described in prior work [29, 60].

pool_open (name,
mode)

Function Description
pool* Create a pool with the specified size
pool_create (name, and associate it with a name. The
size, mode) running process is the owner.
pool” Reopen a pool using name that was

previously created. Permissions will
be checked.

pool_close(pool” p)

Close a pool p

Return the root object of the pool p
with specific size. The root object

OID pool_root(pool is intended for programmers to design

p. size) as a directory of the contents in the
pool.
OID pmalloc (pool* Al.locate a.chunlf of persistent data
size) with the given size on pool p and
P return the ObjectID of the first byte.
. Free persistent data pointed to by
pfree(oid) the ObjectID.
. Translate an ObjectID to a virtual
void

address. Used when there is no

id_direct(oid .
oid_direct(oid) hardware translation.

the process’ address space. In our case, a pool is always
mapped to a page-aligned contiguous virtual address range
large enough to fit the pool.

2.3 Hardware-Supported Address Translation

Table 2. Instructions to support translation in hardware [60]

Instruction Description
nvld rd, rs1, imm | rd = MEM[Lookup(rs1)+imm]
nvst rs1, rs2, imm | MEME[Lookup(rs2) + imm] = rs1

Translation from a pool pointer to virtual address places
a burden on the programmer and incurs significant perfor-
mance overhead if performed in software. We adopt the
architectural design proposed by Wang et al.[60] to acceler-
ate ObjectID translation. In order to distinguish pool pointer
format from regular pointers, accesses to a pool must be
made using special load and store instructions (nvld and
nvst) as shown in Table 2. When a pointer is accessed with
nvld or nvst, the ObjectID is used to index a table called
persistent object table (POT); a POT entry specifies the base
(virtual) address of the pool. A recently-used subset of POT
entries can be cached in a hardware structure called persis-
tent object lookaside buffer (POLB). The location pointed to by
the pointer is obtained by adding the base address (obtained
from the POT/POLB) with the 32-bit offset. Figure 2 shows
the brief system design of POLB and POT.

I Memo |

3 v POT ||

' Coe —1—— | Send Translated
nvld/st —————— > POLB Address to Access

Memory

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. Design of POT and POLB in [60]

3 Premises

This section describes some premises necessary for following
the rest of the discussions.

The PMO is a general system abstraction of data, and
can be used to wrap any data, residing in volatile memory
(DRAM) or persistent memory (NVM). However, supporting
attach and detach primitives that require system namespace
and permission mechanism make it more useful and appli-
cable for persistent data, such as memory-mapped files or
persistent data structures. It is likely that the PMO abstrac-
tion will be used to hold data that is small/medium in size
(e.g., sub-GB), while large data will still utilize files, consider-
ing that the cost per byte of disks/SSD is substantially lower
than even NVM and that NVM capacity is limited. A PMO
will also tend to be small because it will be data structure-
centric, hence data requiring dissimilar data structures is
likely to be split into multiple PMOs for easier maintenance.
A corollary of the PMO being small/medium is that a pro-
cess will likely attach multiple, perhaps many, PMOs to its
address space during its execution. As a result of multiple
PMOs accessed per process, it is unlikely for all the PMOs
to be accessed all the time throughout a process execution.

Furthermore, we hypothesize that due to convenience, a
process will attach a PMO in its address space much longer
than needed. It is easy to figure out when to attach a PMO
since it precedes access. However, it is less straightforward
to determine when to detach a PMO. A process is supposed
to detach a PMO after it finishes using it. However, since
there is no obvious penalty for detaching late, it is likely
that a PMO is attached far longer than needed, evidenced
by the fact that in existing persistent memory benchmarks
(e.g., WHISPERS [45]), persistent data structures are kept in
the process address space for nearly entire executions of the
programs.

Therefore, we advocate an automated approach where
code analysis is performed to figure out which functions
contain code that access PMO data. Once these functions
are found, they become candidate to wrap by attach and de-
tach. Nested attach/detach is avoided by wrapping only the
outermost function. We introduce a term, Attached Memory
Exposure Time (AMET), which measures the total length of
the time when a PMO is being attached to a process. Reduc-
ing AMET is important to reduce the exposure of PMO to

security attacks, but also to reduce the code attack surface
to only that which wrapped by attach and detach.

Threat Model Just like any other data structures, data
structures in PMO may contain buffers and pointers. Code
that access PMO may contain regular known vulnerabilities.
So traditional memory vulnerabilities are assumed to exist.
We do not seek to protect against specific vulnerabilities. In-
stead, our focus on making unauthorized reads or writes to
data in PMOs difficult. MERR only protects the PMO hence
other parts of the process code or data would still need tra-
ditional protection against memory disclosure/corruption.

We assume trusted system software, such as the OS, which
manages address space isolation between processes. With
that, read or write to data to memory region that is not
mapped in the page table will not be permitted and will
generate segmentation fault exception. Furthermore, we as-
sume that the processor memory management unit (MMU)
is implemented correctly, in that it will not allow access of
memory that is not mapped to the page table.

While a PMO is attached, the attacker can probe, read or
write the data in the PMO. Our PMO permission mechanism
allows to mark PMO as non-executable, hence we assume
that the OS sets up each PMO as non-executable, hence if
the attacker injects code into the PMO, the code cannot be
executed.

4 Reducing Memory Exposure

This section describes our proposed techniques to mitigate
the vulnerability of PMOs to memory attacks by reducing
the attached memory exposure time (AMET) of PMOs.

4.1 Reducing AMET

As we argued earlier, it is likely that when a process attaches
multiple PMOs, it will work on a particular PMO for only a
small fraction of time. Keeping the PMO attached from the
start of the process until process termination unnecessarily
exposes the PMO to memory attacks. Thus, our first strategy
is to reduce AMET by tightening up the window of time
when the PMO is attached.

Reducing AMET improves the security of using PMOs. If
an unauthorized memory read or write occurs when a PMO
is not detached, the read or write will trigger a segmentation
fault, prohibiting the attack from succeeding.

In thinking about how small AMET can be made, one ex-
treme is to wrap each load or store instruction with attach()
and detach() system calls. However, system calls incur sub-
stantial overheads, due to pipeline flush, mode switch, and
cold cache effects. Furthermore, since attach() maps a PMO
to the calling process address space, if the PMO spans over
multiple pages, multiple page table entries (PTEs) must be
initialized by the kernel. For each page, two types of cost
are incurred: TLB shootdown and page fault, the latter dom-
inating the cost. A TLB shootdown is initiated, by serially

interrupting each core which must acknowledge the TLB
invalidation. The cost of TLB shootdown is in the order of
thousands of clock cycles per core [22]. Even for a single
page, malloc takes 2us. As the number of pages increases,
the latency increases super-exponentially, reaching several
milliseconds for 1GB data (256K pages X 4KB). On top of
that, after mapping, an access to recently-mapped page in-
curs a page fault that requires the page fault handler to read
a page size region from the file and copy it to the mapped
page. Many page faults must occur to populate the memory
mapped region. For a PMO, since it already resides in mem-
ory, a page fault does not need to perform any copying other
than initializing the PTE to correctly point to the correct
page of the PMO with the right permission. Thus, it is clear
that we cannot use attach()/detach() too frequently.
Reducing attach/detach frequency could reduce the over-
head but enlarge exposure time. Fundamentally, minimizing
the cost of PMO attach/detach is the key to this tradeoff.

4.2 Fast and O(1) PMO Attachment

In our model, PMO size must be specified at creation. Fur-
thermore, PMO is always mapped to a contiguous virtual
address (VA) space, but may not be contiguous in physical
memory. If during execution a PMO runs out of space, a
system call to increase its size is required. If the current VA
range cannot be extended, the process must detach it and
re-attach it at a new, larger, VA range.

As discussed earlier, there are three types of costs associ-
ated with a memory map: TLB shootdown, PTE initialization,
and page faults. Let us examine these costs, starting with
the simplest case. We assume hierarchical page table (PT)
organization, similar to one used in x86 systems. Suppose
that a PMO fits in a page (i.e. its size is smaller than 4KB).
In this case, to attach the PMO to a process address space,
we need to simply find an unassigned PTE in the process PT,
and initialize it to point to the physical page frame where
the PMO is currently residing (Figure 3(a)). The permission
in the PTE is initialized to match the process’ request for the
PMO. The initialization of the PTE requires TLB shootdown
to enforce TLB coherence. Subsequently, no page fault will
be incurred as the PMO is already in the physical memory
and the PTE is valid. Thus, we only incur the costs of TLB
shootdown and PTE initialization.

Now let us consider a large PMO, spanning multiple pages,
say 256K pages, for a total PMO size of 1GB. In this case,
attaching the PMO involves allocating at least one L3 PTE,
512 L2 PTEs, and 256K L2 PTEs, a TLB range flush being
initialized. This is clearly prohibitively expensive. Thus, we
propose to store a PT subtree in the PMO itself as metadata.
The PMO PT subtree is hierarchical just like the process PT,
with hierarchy depth depending on the PMO size. If a PMO
is 4KB or smaller, it has no subtree. If it is 2MB or smaller,
the subtree starts from level 1. If it is larger than 2MB but 1
GB or smaller, the subtree starts from level 2, etc.

Process’s Page Table

L4 Dictionary L3 Dictionary

Attach (PMO ID)

Modified
POT

Update

POLB
Permission Matrix

PMO size
Physical address of PMO page table dictionary or data

Occupiedentry: [] Emptyentry: []

L2 Dictionary L1 Dictionary 4KB PMO

'_\t Data (4KB)
@ 5 G [/

(@) PMO smaller than or equal to 4KB
1GB PMO

@ L2 Dictionary

v —>

Data

L1 Dictionary (4KB Per Entry)

q
>

512 entries in
a 4KB page

(b) PMO larger than 4KB
Attached entry: [N Attach steps: @ @ @

Figure 3. Fast PMO attachment mechanism for a PMO size < 4KB (a), and for PMO size > 4KB (b).

Thus, attaching the example PMO would require initializ-
ing only one (parent) L3 PTE, to point to the existing PMO
subtree. Figure 3(b) illustrates this case. Hence, only one PTE
entry is initialized and one TLB shootdown is involved when
attaching a PMO. Consequently, PMO size no longer deter-
mines the cost of attaching it. A drawback of this approach is
that PMO will occupy a VA range that is one of PT granular-
ity increments, e.g. 4KB, 2MB, 1GB, etc., introducing VA (not
PA) fragmentation. A similar optimization was proposed for
memory-mapped files [27] and file-only memory [56]. How-
ever, there are differences between files and PMOs. A file is
viewed uniformly by all sharing processes, whereas a PMO
allows a process-specific view. For example, one process may
attach a PMO in a read-only mode, while another process
may attach the same PMO with read and write mode in its
address space. We discuss process-specific view of PMO in
Section 4.3.

To manage PMOs, the system manages a structure called
persistent object table (POT) (Section 2). A POT entry con-
tains PMO ID, PMO size, physical address (PA) of the PMO
PT subtree, permission, etc. Figure 3 illustrates the steps for
attaching a PMO. When the system receives an attach() re-
quest with a PMO ID, first it enters kernel mode. The PMO
ID is then used by hardware MMU to perform POT walk to
find the PMO, including its size and the PA of the PMO PT
subtree. Second, the system finds an empty PTE at the ap-
propriate level to accommodate the PMO size. For example,
if the PMO is 512MB, the next size up in the PT hierarchy
is 1GB, hence a level 3 (parent) PTE is needed to point to
the PMO PT subtree. If no such entry is found, the system
allocates a new page of level 3 PTEs. Third, the empty PTE is
initialized to point to the PA of the PMO PT subtree, and its

valid bit set. After these three steps, the PMO is accessible
without further page faults. The PMO attachment latency
thus only takes a constant time, unaffected by PMO size.

When accessing the PMO, the process may miss in the TLB,
and PT walk is performed, involving the process PT and PMO
PT subtree. The PT walk transitions seamlessly between the
PT and the PMO PT subtree. The final VA-to-PA translation
is then placed into the TLB. While the PT walk does not
distinguish between the process PT and PMO PT subtree,
the PMO PT subtree is managed differently. The PMO PT
subtree is initialized when the PMO is created. Furthermore,
the PMO PT subtree must be persistent and crash atomic, so
that the PMO can be recovered and addressed correctly after
power failure.

Initializing PTEs in PMO PT subtree takes time, but it is a
one-time cost. Once the subtree is constructed, we can reuse
it cross runs. It can also be reused by different processes if
the process passes permission check.

In contrast to the attach() system call, the detach() system
call looks more expensive: It requires shooting down all TLB
entries of the PMO. Since the VA of a PMO is consecutive,
TLB entires of a PMO can be flushed through a TLB range
flush. Meanwhile, unlike attachment, PMO detachment is
typically off the critical path. Hence, detach() latency scales
up with PMO size, but bounded by the size of the TLB.

With these optimizations, we reduce the cost of attaching
a PMO such that it becomes feasible to perform them quite
frequently. Programmers can simply use the O(1) attachment-
based memory management to improve the security of using
PMO with low performance overhead.

nvid/nvst 1 Values of various field PMO tag System Level Permission
o : PMO size (s) Suffix Bits | Permission
@Lé@ s < 4KB xxx (12 bits) | [00 [invalid
4KB < s < 2MB | xxx (21 bits) 1x |read/write
VA 9 2MB < s < 1GB | xxx (30 bits) | |01 read only

Regular
Id/st

Permissg1 Matrix T

Error Handler

PMOID Size PMO tag System level
(32b) (48b) Permission
...001 | 4KB | 010...xxx >

...110 |96MB [110...xxx

§ PMO level
Permission Fail

...010 | 3MB [110...xxx

Most Strict
Permission
Check
8

VA Page level
—> LB 'a > | Permission

Permission
Pass

Access PMO

Figure 4. The design of permission matrix

4.3 PMO Access Permission Design

One challenge of embedding PT subtree in a PMO is that
permissions of each PTE is PMO-specific, rather than process-
specific. While utilizing a PMO PT subtree for attachment is
fast, the process must rely on permission bits already set in
the PT subtree. This does not allow a process-specific view
of a PMO. For example, one process may want to attach a
PMO in a read-only mode, while another process may want
to attach the same PMO with read/write mode.

In order to allow process-specific permissions for a PMO,
we propose a permission matrix structure for setting, main-
taining, and validating PMO-wide permission. Each process
has its own permission matrix, allowing process-centric view
of PMOs. PMO-level permission lets the system to treat the
entire PMO as the basic unit to manage rather than 4KB
pages, which makes it convenient and cheap to manage
PMOs spanning multiple pages. A permission matrix entry
will be created when a PMO is attached and will be deleted
when the PMO is detached. The permission matrix is a sys-
tem table for the process, but cached for quick lookup. A
memory access is valid when it is determined to be legal
by both the permission matrix and PT/TLB. Permission ma-
trix also allows process-specific view of a PMO since each
process has its own permission matrix. Permission matrix
becomes a part of the process state and is included in the
process context switch. Permission matrix does not need
to be persistent because upon a crash or power failure, the
process lost its state, including attachment of all PMOs it had
access to. When the process restarts, it needs to re-attach all
PMOs that it wants to access.

Figure 4 illustrates the design and mechanism of the per-
mission matrix. The permission matrix has one entry for
each PMO. It contains a 32-bit PMO ID, PMO size, a 48-bit
PMO tag, and system level permission. The PMO ID uniquely

identifies each PMO. The size encodes how large the PMO
is. The PMO tag identifies VA range of a PMO. It consists
of a prefix whose length depends on the size of the PMO.
For example, in the table above the diagram, a PMO that
is up to 4KB has a 12-bit suffix, which means the prefix is
48 — 12 = 36-bit long. A larger PMO that is up to 2MB has a
21-bit suffix, which means the prefix is 48 — 21 = 27-bit long.
An even larger PMO that is up to 1GB has a 30-bit suffix,
which means the prefix is 48 —30 = 18-bit long. System-level
permission requires kernel privilege to set. The total size of
the permission matrix depends on the number of PMOs that
can be cached there; it is less than 1KB to cache up to 32
PMOs.

The permission matrix is used in the following way. When
a nvld/nvst is executed, the object address involved is trans-
lated into VA by POLB/POT (Step 1). Discussion on POLB
and POT and how they support PMO relocatability was pre-
sented in Section 2. For regular 1d/st instruction, the address
is already in the form of VA (Step 2). The VA is then com-
pared against all PMO tags up to the length of the PMO tag
prefix (Step 3). If a match is found, the access is to an address
covered by a PMO PT subtree. Otherwise, the access is not
to a PMO; no further steps are needed. If an address matches
a PMO tag prefix (suffix is ignored), we check the load/store
against the system-level permission (Step 4). A load (or store)
is not legal if the system-level permission does not allow read
(or write) access, and in this case an exception is triggered
(Step 5). If the load/store passes through system-level per-
missions, the legality of the load/store must still wait until
permission at the page level at the TLB occurs (Step 6). If the
load/store is legal according to both the permission matrix
and the TLB (Step 7), the load/store can commence (Step 8).
Otherwise, an exception is raised.

For fast access, the PMO tag prefix checking utilizes a
CAM tag array, and only a limited number of PMO entries
are cached. The permission matrix can also perform an addi-
tional security check. When a VA prefix matches a PMO tag
prefix, we can retrieve the PMO ID recorded in the matching
entry and compare it against the nvld/nvst’s upper 32-bit
object ID. If they match, the nvld/nvst is intended to access a
particular PMO and accesses the address range of the PMO.
If they mismatch, there is something wrong, where it is ac-
cessing a particular PMO but with an address range of a
different PMO. This situation could occur when a pointer
intended to access a particular PMO has been overwritten
by the attacker to point to a different PMO.

The PMO level permission check and page permission
check are performed in parallel, so the permission matrix
latency is hidden. However, nvld/nvst must still go through
POT/POLB to generate VA before the VA can be checked
against the permission matrix. Hence, an additional clock
cycle delay is added to nvld/nvst.

5 PMO Layout Randomization
5.1 Motivation

In the previous section, we have discussed how we can im-
prove the security of PMO by (1) reducing AMET using
frequent use of fast O(1) attach() and detach() system call.
However, this protections in some cases will still be insuf-
ficient. First, even though a PMO may be attached and de-
tached many times, if every time it is attached, it is attached
in the same address range, the attacker can construct an at-
tack targeting the address range slowly. Second, data in PMO
is reused many times in different parts of a program. The
attacker can combine the information obtained in different
parts of this program to launch a successful attack. Finally,
a PMO has a long life time, even small memory disclosure
or information leak per run can be aggregated across many
runs of the same or different programs.

To avoid such aggregation of knowledge across attach
sessions or across runs, we propose PMO Space Layout Ran-
domization (PSLR). PSLR changes the address where a PMO
is attached at every attached session. PSLR makes it difficult
for attackers to figure out which address location it must at-
tack, as it frequently changes. It provides stronger protection
than address space layout randomization (ASLR) which ran-
domizes the start address of segments at the start of program,
but generally leaves them unchanged during the process life
time. Unlike segments, PMO can be attached and detached,
so we exploit this fact to re-randomize PMO address at every
attach.

Re-randomization in ASLR is possible, but substantially
increases execution time even when performed every 5 sec-
onds [54]. This is due to (1) relocating a segment involves
copying a huge chunk of memory from one place to another
and rewriting pointers, (2) invalidating all PTEs at the old

location and initializing all PTEs at the new location, and
(3) many page faults result after re-randomization. Thus,
frequent re-randomization in ASLR is not feasible due to
the high overheads. With such high overheads, existing re-
randomization focuses only at a low frequency fine-grained
randomization [54], coarse-grained randomization [2], or
permutation [3, 33]. The security level is also limited due to
low frequency and small entropy. In contrast, we will discuss
that unlike segments, PMO can be moved more easily and
cheaply.

5.2 PSLR Design

Our PSLR combines the O(1) attachment with re-randomization.
For each attach() system call, the system selects a random
empty PTE to attach the target NVM. Traditionally, to find an
empty PTE, the PT needs to be locked to avoid races, which
may create a critical path. To avoid coarse-grain locking, we
maintain three separate free lists to record several random
PTEs at different PT hierarchy levels, representing 4KB, 2MB,
1GB regions. Each free list must have a sufficient number
of PTEs to choose randomly that are allocated but have not
been assigned, meaning that the PTE’s ancestors (parent,
grandparent, etc.) have all been allocated and assigned to
point to the page where this PTE is located, but the PTE itself
is not assigned a valid PA yet. Among PTEs in the free list, a
random PTE is selected for the PMO to be attached to.

PSLR avoids the high cost of re-randomization. First, point-
ers in PMO are relocatable. Second, the embedded PT subtree
in PMO also allows quick relocation, because none of PTE in
the PMO PT subtree needs to be modified. All that needs to
be modified is the parent PTE. Hence, relocation of a PMO
at attachment time incurs a constant cost involving only one
PTE initialization. Finally, page faults are also averted.

Page Table

[Empty Entry Random Selector J

PoT Not Enough Physical Address
@ Empty Entires of Empty Entry

Pool Size E Random Select Empty Entries List 1

Attach (PMO ID)

Pool size
PA of PMO PTE or data

4KB Entries H 2MB Entry H 1GB Entry

l @ Physical Address
of Empty Entry
Attach PMO PTE or data
to empty entry

Figure 5. The design of PSLR with attach system calls

Figure 5 shows PSLR design. First, the system will use the
PMO ID in the attach system call parameter to find the pool
in POT. The system retrieves the PMO size and the physical
address (PA) of this PMO. Second, the system uses the size
to check the list corresponding to the correct size bin (4KB,
2MB, or 1GB), and retrieves a random PTE from the list. The
PTE is then initialized with the PA of the target PMO PT

subtree. Offline, the random selector pre-selects a random
PTE for following attach requests. It relies on the random
number generator from Intel AES-NI instructions. If the list
does not have a sufficient number of PTEs, the selector locks
the page table to find the empty PTEs and add them into the
list.

6 Evaluation
6.1 Methodology

Processor and system environment. We implement the
APIs as a kernel module in Linux OS. In the kernel mode, the
system maintain pre-allocated PMO lists with different size
bins: 4KB, 2MB, and 1GB. To serve an attach() system call, a
pre-allocated page is randomly selected. Permission check
is performed in kernel mode. Upon a detach() system call,
PMO is unmapped from a process PT but we still maintain
this PMO at the system level.

Table 3. Experimental Setting

Intel(R) Xeon(R) Silver 4114 CPU

Processor ||) res @2.20GHz
L1D cache 8-ways 32KB
Cache L1i cache: 8-ways 32KB
L2 cache: 16-ways 1024KB
Memory 128GB DDR4 (2666 MHz)
TLB L1 data TLB: 4KB pages, 4-way, 64 entries

L2 4KB/2MB pages, 6-way, 1536 entries
oS Linux kernel version: 4.4.0-145-generic
POLB Translation: 0.5ns; PM Check: 1ns;
TLB invalidation: 130ns; TLB miss: 11.4ns;
Cache miss: 16.7ns

Measured

To evaluate the performance of our design, we use a sys-
tem with DRAM as main memory, shown in Table 3. The
PMOs are implemented as memory-mapped region in DRAM.
We execute the default workloads to get the baseline perfor-
mance. Then we insert attach() and detach() into the code,
and execute the workload to measure the overhead from
attach() and detach(). After that, we re-execute the work-
loads again with pin [43] to record the memory traces. We
use these traces to estimate the overhead from architectural
designs.

To estimate the overhead of attach() and detach() system
calls, we use a combination of things. We create a new sys-
tem call and place it where attach and detach would have
been located. In the system call, we first check whether this
PMO is already attached in this process within mutex pro-
tection, then we perform a copy_from_user to copy parame-
ters of system call from user space to kernel space, kmalloc
involving a single page, virt_to_phys for physical address,
remap_pfn_range to remap a kernel page to the user space
including PTE initialization, flush_tlb_range to TLB shoot-
down when detach(). Modification to the PTE is also pro-
tected using mutex lock. Thus, even though we did not fully

implement the functionality of attach/detach, we model its
overheads, including PTE initialization, TLB shootdown, sys-
tem call, mode switch, the ensuing TLB miss, cache miss,
and page fault. Because the entire embedding page table is
attached, there is no subsequent page faults when the pro-
gram is accessing the PMO data. We use a similar approach
to model the detach() system call performance.

To model the overhead of permission matrix check (that
incurs additional latency beyond the TLB), we add a constant
2ns latency to every 1d/st to PMOs. This is likely too high be-
cause in an out-of-order processor, not all such latencies are
exposed. However, in this paper, we are more interested in
estimating the upperbound performance overheads instead
of lowerbound or averages.

To account for additional TLB misses and cache misses that
come from PSLR, we use Intel Pin instrumentation tool [43]
to produce memory traces that are then modified and re-
played on a TLB simulator and a cache simulator to obtain
each benchmark’s new TLB miss rate and new cache rate.
Each additional TLB miss or cache miss is then multiplied by
the average cost of TLB misses or cache misses and added to
the execution time.

Workloads. To demonstrate our techniques on real world
applications, we use six benchmarks (tpcc, ycsb, echo, hashmap,
ctree, redis) from Whisper benchmark suite [45], which were
derived from real world applications. The suite was built
assuming the architecture has a mixture of persistent and
volatile memory. In Whisper, a program usually places op-
erations into an epoch, and multiple epochs execute in a
transaction. It sets a ratio of update/read operation for each
transaction or directly use insert operations within a trans-
action.

In our experiment, we run WHISPER benchmarks for 100k
transactions or operations in a 2GB PMO. Table 4 shows a
brief description of Whisper benchmarks; more details can
be found in [45].

Table 4. WHISPER Benchmarks [45].

l Benchmark “ Description ‘

Echo echo test, 100k transactions in total
YCSB YCSB like test, 80% writes,

100k transactions in total
TPCC TPC-C like test, 80% writes,

100k transactions in total

C-tree 100K insert operations
Hashmap 100K insert operations
Redis redis server/ Iru-test, 1 million gets/puts

6.2 Experimental Results

This section first reports the overhead of MERR in a spec-
trum of attach/detach frequencies, and the corresponding
reduction of memory exposure time, and then provides the
analysis of the benefits MERR brings to memory security.

6.2.1 Memory Exposure and Overheads

This part uses four metrics: 1) AMET: the attached memory
exposure time as defined earlier; 2) Attached Memory Ex-
posure Rate (AMER): AMET over the total execution time;
3) Memory Exposure Window (MEW): the length of an at-
tach/detach session; 4) Average PLSR period length: the av-
erage re-randomization period length, equal to the average
time between two adjacent attach() calls.

In our experiments, for evaluation purpose, we adjust
the insertions of attach/detach calls in the programs such
that the programs exhibit a spectrum of AMER values. We
first report the detailed measurements when the AMERSs of
the program executions are about 30%, and then report the
results in other AMER settings.

Table 5. Measurements of MERR when AMER is about 30%.
The overhead section reports the overhead percentage from
each of the sources and the total.

Benchmark Echo | YCSB | TPCC | CTree] HM | Redis| Avg

AMER (%) 301 | 306 | 31.6 | 292 | 299 | 30.0 | 30.2
PSLR
i 317 | 208 | 193 | 594 | 366 | 715 | 414
Period (us)
MIN | 51 | 27 | 30 | 34 |34 |31 | 345
A(ASST AVG |96 |99 |57 | 129 | 117 | 121 | 103
MAX | 104 | 118 | 85 | 273 | 136 | 197 | 152
Overhead
Attach (%) 63 |67 [104 |34 |55 |28 |58
Detach (%) 53 |57 |88 | 28 |46 | 24 | 49
POLB (%) 0.011 | 0.005 | 0.018 | 0.004 | 0.007 | 0.001| 0.008
?Z;’trr‘fzgr; 0.019 | 0.005 | 0.024 | 0.006 | 0.011 | 0.001| 0.011

TLB misses (%) 0.036 | 0.038 | 0.133 | 0.019 | 0.031 | 0.017| 0.024
Cache misses (%) | 0.063 | 0.067 | 0.259 | 0.034 | 0.055 | 0.031| 0.085
Total (%) 11.72 | 12.52 | 19.63 | 6.26 10.2 | 5.25 | 10.9

Table 5 shows the observations when AMER is around
30%. As the programs by default keep PMOs open through-
out their executions, a 30% AMER means an around 70%
reduction of the memory exposure time. The average mem-
ory exposure window (MEW) is only 10.3us. The average
re-randomization period length is 19.3us to 71.5us, and the
average time overhead is 10.9%. Putting the results into per-
spective, while not directly comparable in goal and the scope
of address space protection, existing ASLR re-randomization
was reported to add 50% overhead if re-randomization occurs
every 1 second [25]. Compared to ASLR re-randomization,
PSLR re-randomization is 24, 154X more efficient, while offer-
ing the additional protection of reducing memory exposure.
The overhead section in Table 5 reports the detailed break-
down of the time overhead, showing the overhead from each
of the sources. Attach and detach dominate the overhead.
The NVM pointer address translation (POLB) and the opera-
tions on the permission matrix weigh no more than 0.04%,
the use of re-randomization incurs some extra TLB and cache
misses, but the total performance penalty from them is no
more than 0.5%.

The effectiveness of PSLR is attributed to the removal of
most page faults, PTE initializations, and TLB shootdowns,

| ¥ AMER20% % AMER30% % AMER40%

90

80 - - - - - - - - - - -~ - T T T T T T T T T T
/0] S A S
60F — - — - — - - — - _ A S
50 - - - ————————— —— e

) i .

MEW (us)

30 - - — — — — — - - _ _ _ _ I S

igijqﬁ} Al

echo ycsb tpcc ctree hashmap redis avg

Figure 6. MEW of MERR at three different AMER values.

30% T T

T T
_4—20% AMER

Attach
25% b — - e Detach||
30% AMER mmm Other
20% b —————— = ___ W= —
g 5 40% AMER —
4]
< 15%-—---——----——!/ ------------------ —
o
>
(@]

10% MR _ SEEM___ "W ____ S _____ M -

5% —Eigm o =R CU 1 W s m -

echo ycsb tpcc

ctree hashmap redis avg

Figure 7. Overhead of MERR at three different AMER values.

as well as PMO relocatability which removes the need to
rewrite pointers when a PMO is moved.

The variations of overhead across the benchmarks are
largely caused by the differences in the density of PMO
accesses in the programs. A denser distribution entail the
need for more attach/detach sessions to get the same AMER.
TPCC, for instance, has a 14.2X higher PMO access density
than Redis has, which leads to a correspondingly higher
density of attach/detach calls, and hence the larger time
overhead.

Figures 6 and 7 report the MEW and overhead of MERR on
the benchmarks when we vary the frequency of attach and
detach calls such that the AMER of the benchmarks are at
about 20%, 30%, and 40% level. In the overhead breakdown in
Figure 7, we use "Other" to represent the total overhead of all
the sources besides attach and detach. The results show that
at AMER=20%, MERR reduces average MEW to 5us while
incurring about 18% average overhead; the numbers change

to 10us and 10.9% for AMER=30%, and 12us and 7.5% for
AMER=40%.

6.2.2 Security Analysis

The reduction of AMET provides a high-level memory pro-
tection as while detached, a PMO is not in the process ad-
dress space, and hence its data cannot be accessed at all
(read, written, or executed) by any instructions, even specu-
lative ones. One implementation vulnerability that enables
Spectre/Meltdown-style attacks is memory access by specu-
lative instruction which is allowed to proceed and alter the
cache state. With MERR, even such vulnerability is protected
against because there is no valid PTE entry that maps the vir-
tual address that is being accessed to a valid physical address.
In comparison, if the PMO is always attached at the same
virtual address across all attach sessions, then the adversary
can aggregate these sessions and perform various steps of
the attack across sessions. MERR deploys PSLR to randomize
the virtual address at which a PMO is attached, at each attach
session. In this case, to succeed, the adversary would need
to perform the attack in one attach session. Recent exploits
require several seconds to succeed [54]. Meltdown attack
still needs hundreds of microseconds to test one possible
randomized layout [41]. Our PSLR re-randomizes the layout
more than 24154 times per second, and each attach session
lasts for less than 20 us, creating an attack window that is
very difficult to exploit by currently known attacks.

Table 6 enumerates vulnerabilities that we protect against,
divided into two stages (attached or detached). All of the
listed attacks require some access to PMO data which is
not possible during the time PMO is detached, which in
our experiments is 70% of the time. We discuss each of the
vulnerabilities next.

Table 6. Security of the PMO under MERR protection. X for
prevented completely, H for hindered.

Stage
Attacks PMO detached PMO attached
Meltdown [41] X H
Spectre v1, v1.1, v1.2 [34] X H
Spectre v2, v4, v5 [36, 44] X H

Meltdown Meltdown requires three steps to succeed in
reading secret data: probing to read secret data address, trans-
mitting the secret, receiving the secret. The probing step is
when the adversary probes a virtual address to read secret
data. While detached, the probing step will fail as no valid
PTE exists, hence the program will receive a page fault. Be-
cause both the user space and the kernel space cannot read
this data due to hardware valid bit protection, this data is
fully inaccessible. With the page fault, the probed virtual
address of secret data cannot be put into the cache or the

register. The adversary may use error handling to fork an-
other process for the next probe. But the next probe will also
generate page fault as long as the PMO is detached. Such
a page fault can be used to raise an alarm to alert user or
developer of potential ongoing attacks or bugs.

Spectre Spectre attack relies on mistraining the branch
prediction including branch target buffers and return address
stacks, and leaves architectural information of mispredicted
branch to reveal secret data. MERR does not protect against
mistraining. In the next step, Spectre also probes a virtual
address to read data. This probe is not permitted when a
PMO is detached, but may not necessarily raise an exception
if the instruction ends up flushed from the pipeline. Another
difference is that the Spectre has lower chance to launch a
successful attack than Meltdown due to the time needed to
mistrain the branch predictor.

7 Discussions

In our experiments, we varied the frequency of attach/detach
calls to evaluate the sensitivity. In actual programming, their
insertions could be determined by programmers or compil-
ers; details are outside of the scope of this paper.

To support multi-threading, each PMO in each process
will have an attached counter initialized as 0 when a PMO is
opened. This data is maintained as metadata in each process.
For every attach or detach, the operating system first checks
this bit via mutex, increasing or decreasing the counter by
one for attach and detach respectively. At an attach call, if
the counter is larger than 0, the counter increases but other
operations of the call are skipped. At a detach call, if the
counter is greater than one, the counter decreases by one,
and other operations of the call are skipped.

8 Related Work

Persistent Memory. In this paper, we discussed primitives
(attach and detach) for PMOs and architecture support for
them. There is a rich set of papers in literature covering other
aspects of persistent memory, including but not limited to,
memory-mapped files [17, 57], file system [18, 20, 64, 65],
physical organization [7, 8], persistency models [6, 18, 35,
47, 53, 55, 57], logging [52], checkpointing [21], memory
encryption [9-11, 16], and GPU [40].

Memory Protection/Isolation. Software-fault isolation tech-
niques (SFI) [49, 58] create a separate protected memory re-
gion by instrumention at every memory access instruction.
This ensures that the instrumented instruction can only ac-
cess the designated memory segment. SFIs incurs large over-
head and can be bypassed through Meltdown and Spectre. IS-
boxing [19] separates address space to allow untrusted code
to access only 32-bit address space. The available address
space reduction could limit practical usage of NVM. Another
way to protect data is Data Flow Integrity (DFI) [5, 14]. DFI
static analysis creates data-flow and enforces the data flow

during runtime by instrumenting memory access instruc-
tions. However, it incurs 50-100% overhead if it is applied to
all data. Jang et al. [30] propose to provide a heterogeneous
isolated execution. Another work that tries to hinder the
probe step of attacks [12] transforms the program whenever
it detects probes. It focuses on only code reuse attacks.

In the hardware aspect, Frassetto et al. [23] try to pro-
vide in-process memory isolation; Spectre and Meltdown
remain threats. CHERI [62] introduces two stages to provide
fine-grained memory isolation. But the switching overhead
is high and it relies on intensive static analysis. Intel TSX
groups several instructions into an atomic transaction. Ex-
ception would be raised at an invalid memory access. But
Meltdown can completely surpass this protection [31]. Intel
CPU implements a variety of new memory protection, in-
cluding Memory Protection Extension (MPX) and Memory
Protection Keys (MPK) [28]. MPX is to provide hardware-
assisted checks to avoid buffer overflow. The programmers
can specify bounds using dedicated registers which can be
checked with newly introduced instructions. But the library
code can still access secret data. Using MPK to protect CPI
will incur 12.43% average overhead [23]. The technique pro-
posed in this work is complementary to the prior work, in
that it shortens the exposure time of memory to possible
attacks.

Table 7. Randomization Techniques Comparison. DP for
data pointers, D for data.

Scope Entropy | Runtime Avg.
Methods DP | D | (bits) Randomization Freq Overhead
64-bits Pax [1] | v | < | 29-30 No 3.6%
TASR [13] 7| x | 29-30 At1/0 Only 30-40%
Runtime
ASLR [42] v X | 28-48 At fock() Only 0.5%
Shuffler [63] v X | 27 Fix Interval, 50ms 14.9%
Morpheus [24] | V X | 60 Fix Interval, 10ms 4.4%
Enhance .
ALSR [25] v v | 18-36 Fix Interval, 5s 10%

Programmer inserted

Ours v v | 18-36 & Runtime, 41.4us 10.6%

Randomization. Randomization and runtime re-randomization

try to hinder attacks by randomizing the code and data. As
shown in Table 7, ASLR [1] serves as the first-level defence,
but can be easily bypassed as a static one-time randomiza-
tion. TASR [13] and Runtime ASLR [42] improve ASLR by
providing re-randomization at sensitive system calls. Shuf-
fler [63] and Morpheus [24] further augment ASLR by reduc-
ing overhead and adding encryption. Shuffler re-randomize
the code, code pointers, and data pointers at a 50 ms pe-
riod with 14.9% overhead. Morpheus re-randomize the code
pointers and data pointers at a 10 ms period with 5% over-
head. Those methods do not support data re-randomization.
Enhanced ASLR [25] provide both data and data pointers
runtime randomization but suffer large overhead, 50% over-
head at a randomization every second and 10% overhead
every five seconds. Our method provides both data and data

pointers runtime randomization with only 10% overhead at
a frequency of every 41.4us.

9 Conclusion

This paper has proposed MERR, a new way to enhance
memory protection with high efficiency, especially useful
for NVM. Complementary to existing approaches, this new
method takes a unique perspective, reducing memory expo-
sure time by enabling fast attach and detach of NVRegions by
embedding embedding page table into a PMO, coupled with
a fast O(1) PMO attach mechanism and other techniques. We
demonstrate the use of the technique for enhancing the fre-
quency of address randomization, and describes the enabled
randomization technique named PSLR. PSLR perform ran-
domization at every PMO attach session. Experiments show
that MERR can reduce memory exposure time by 60% with a
5% overhead (70% with 10.9% overhead). The randomization
period is shortened from seconds in prior work to less than
41.4us, offering significant potential benefits for enhancing
memory security.

Acknowledgements

We thank all the anonymous reviewers whose feedback is
helpful for improving the final version of the paper. This
material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. CCF-1525609, CNS-
1717425, CCF-1703487, and Office of Naval Research (ONR)
under grant No. N00014-20-1-2750. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of NSF.

References

[1] PaX Team. 2003. [n.d.]. PaX address space layout randomization
(ASLR). http://pax.grsecurity.net/docs/aslr.txt.

[2] Martn Abadi and Mihai Budiu. 2005. Ifar Erlingsson, and J. Ligatti.

Control-flow integrity. In Proceedings of ACM Conference on Computer

and Communications Security (CCS).

Misiker Tadesse Aga and Todd Austin. 2019. Smokestack: thwarting

DOP attacks with runtime stack layout randomization. In Proceedings

of the 2019 IEEE/ACM International Symposium on Code Generation and

Optimization. IEEE Press, 26-36.

Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access

memory (ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010),

2237-2251.

[5] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and

Miguel Castro. 2008. Preventing memory error exploits with WIT. In

2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 263-277.

M. Alshboul, J. Tuck, and Y. Solihin. 2018. Lazy Persistency: a High-

Performing and Write-Efficient Software Persistency Technique. In

Proc. of the International Symposium on Computer Architecture.

[7] A. Awad, S. Blagodurov, and Y. Solihin. 2015. Non-Volatile Memory
Host Controller Interface Performance Analysis in High-Performance
1/0 Systems. In Proc. of the International Symposium on Performance
Analysis of Systems and Software.

[8] A. Awad, S. Blagodurov, and Y. Solihin. 2016. Write-Aware Manage-
ment of NVM-based Memory Extensions. In Proc. of the International

E

—

[4

flan)

G

—

http://pax.grsecurity.net/docs/aslr.txt

(10]

(11]

(13]

(14]

(15

—

(16]

(17]

(18]

[19]

[20]

[21]

(23]

Conference on Supercomputing.

A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne. 2016. Silent
Shredder: Zero-Cost Shredding for Secure Non-Volatile Main Memory
Controllers. In Proc. of the International Symposium on Architecture
Support for Programming Language and Operating Systems.

A. Awad, Y. Wang, D. Shands, and Y. Solihin. 2017. ObfusMem: a
Low-Overhead Access Obfuscation for Trusted Memories. In Proc. of
the International Symposium on Computer Architecture.

Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair.
2019. Triad-NVM: persistency for integrity-protected and encrypted
non-volatile memories. In Proceedings of the 46th International Sym-
posium on Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June
22-26, 2019. 104-115.

Koustubha Bhat, Erik Van Der Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2019. ProbeGuard: Mitigating Probing Attacks Through
Reactive Program Transformations. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 545-558.

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and
Hamed Okhravi. 2015. Timely rerandomization for mitigating memory
disclosures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 268-279.

Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software
by enforcing data-flow integrity. In Proceedings of the 7th symposium
on Operating systems design and implementation. USENIX Association,
147-160.

Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng
Wu. 2017. Efficient support of position independence on non-volatile
memory. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 191-203.

S. Chhabra and Y. Solihin. 2011. i-NVMM: A Secure Non-Volatile
Main Memory System with Incremental Encryption. In Proc. of the
International Symposium on Computer Architecture.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Mak-
ing Persistent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems.

Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM,
133-146.

Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The
performance cost of shadow stacks and stack canaries. In Proceedings
of the 10th ACM Symposium on Information, Computer and Communi-
cations Security. ACM, 555-566.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems.

H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin. 2017. Efficient
Checkpointing of Loop-Based Codes for Non-volatile Main Memory.
In Proc. of the International Conference on Parallel Architectures and
Compilation Techniques.

Bogdan F. Romanescu, Alvin Lebeck, Daniel Sorin, and Alecia Bracy.
2010. UNified Instruction/Translation/Data (UNITD) coherence: One
protocol to rule them all. 1-12. https://doi.org/10.1109/HPCA.2010.
5416643

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. 2018. {IMIX}: In-Process Memory Isolation
EXtension. In 27th { USENIX} Security Symposium ({USENIX} Security
18). 83-97.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu
Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris,
Zhixing Xu, Baris Kasikci, Valeria Bertacco, et al. 2019. Morpheus:
A Vulnerability-Tolerant Secure Architecture Based on Ensembles of
Moving Target Defenses with Churn. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 469-484.

C. Giuffrida, A. Kuijsten, and A.S. Tanenbaum. 2012. Enhanced oper-
ating system security through efficient and fine-grained address space
randomization. In USENIX Security Symposium.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. 2016. Data-oriented programming:
On the expressiveness of non-control data attacks. In 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 969-986.

Jian Huang, Anirudh Badam, Moinuddin K Qureshi, and Karsten
Schwan. 2015. Unified address translation for memory-mapped SSDs
with FlashMap. In ACM SIGARCH Computer Architecture News, Vol. 43.
ACM, 580-591.

Intel. [n.d.]. Intel 64 and IA-32 architectures software developeraAZs
manual, combined volumes 3A, 3B, and 3C: System programming
guide.

Andy Rudoff Intel. [n.d.]. Persistent Memory Programming. http:
//pmem.io/.

Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. 2019. Heterogeneous Isolated Execution for Commodity
GPUs. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 455-468.

Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel
address space layout randomization with intel tsx. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 380-392.

Takayuki Kawahara, Riichiro Takemura, Katsuya Miura, Jun
Hayakawa, Shoji Ikeda, Y Lee, Ryutaro Sasaki, Yasushi Goto, Kenchi
Ito, Toshiyasu Meguro, et al. 2007. 2Mb spin-transfer torque RAM
(SPRAM) with bit-by-bit bidirectional current write and parallelizing-
direction current read. In 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. IEEE, 480-617.

Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng
Ning. 2006. Address space layout permutation (ASLP): Towards fine-
grained randomization of commodity software. In 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06). IEEE, 339-348.
Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2018. Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203 (2018).

Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. 2016. High-performance transactions for persistent memo-
ries. ACM SIGPLAN Notices 51, 4 (2016), 399-411.

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre returns! speculation
attacks using the return stack buffer. In 12th {USENIX} Workshop on
Offensive Technologies ({ WOOT} 18).

Emre Kiltiirsay, Mahmut Kandemir, Anand Sivasubramaniam, and
Onur Mutlu. 2013. Evaluating STT-RAM as an energy-efficient main
memory alternative. In 2013 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). IEEE, 256-267.
Volodymyr Kuznetsov, Laszl6 Szekeres, Mathias Payer, George Can-
dea, R Sekar, and Dawn Song. 2014. Code-pointer integrity. In 11th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 14). 147-163.

Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin
Ipek, Onur Mutlu, and Doug Burger. 2010. Phase-change technology
and the future of main memory. IEEE micro 30, 1 (2010), 143—-143.

https://doi.org/10.1109/HPCA.2010.5416643
https://doi.org/10.1109/HPCA.2010.5416643
http://pmem.io/
http://pmem.io/

(40]

[41]

(42]

(43]

(4]

[45

[

[46]

(47

—

(48]

[49]

(50]

(51]

[52]

(53]

Zhen Lin, Mohammad Alshboul, Yan Solihin, and Huiyang Zhou. 2019.
Exploring Memory Persistency Models for GPUs. In Proc of Interna-
tional Conference on Parallel Architectures and Compilation Techniques.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. 2018. Meltdown: Reading kernel memory from user
space. In 27th {USENIX} Security Symposium ({USENIX} Security 18).
973-990.

Kangjie Lu, Wenke Lee, Stefan Niirnberger, and Michael Backes. 2016.
How to Make ASLR Win the Clone Wars: Runtime Re-Randomization..
In NDSS.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM, 190-
200.

Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative
execution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2109-2122.

Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris
Volos, and Kimberly Keeton. 2017. An analysis of persistent memory
use with WHISPER. In ACM SIGARCH Computer Architecture News,
Vol. 45. ACM, 135-148.

Aleph One. 1996. Smashing the stack for fun and profit. Phrack
magazine 7, 49 (1996), 14-16.

Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Memory
persistency. In ACM SIGARCH Computer Architecture News, Vol. 42.
IEEE Press, 265-276.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit object-
oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 745-762.

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software
fault isolation to contemporary CPU architectures. (2010).

Hovav Shacham et al. 2007. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86).. In ACM
conference on Computer and communications security. New York, 552—
561.

Umesh Shankar, Kunal Talwar, Jeffrey S Foster, and David A Wagner.
2001. Detecting format string vulnerabilities with type qualifiers.. In
USENIX Security Symposium. 201-220.

Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan
Solihin. 2017. Proteus: A flexible and fast software supported hardware
logging approach for nvm. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 178-190.

Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the long la-
tency of persist barriers using speculative execution. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

IEEE, 175-186.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time
code reuse: On the effectiveness of fine-grained address space layout
randomization. In 2013 IEEE Symposium on Security and Privacy. IEEE,
574-588.

Yan Solihin. 2019. Persistent Memory: Abstractions, Abstractions, and
Abstractions. IEEE Micro 39, 1 (2019), 65-66.

Michael Swift. 2017. Towards O(1) Memory Proceedings of the Work-
shop on Hot Topics in Operating Systems. In Workshop on Hot Topics
in Operating Systems (HotOS).

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XVI). ACM, New York,
NY, USA, 91-104. https://doi.org/10.1145/1950365.1950379

Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Gra-
ham. 1994. Efficient software-based fault isolation. In ACM SIGOPS
Operating Systems Review, Vol. 27. ACM, 203-216.

Jun Wang, Mingyi Zhao, Qiang Zeng, Dinghao Wu, and Peng Liu.
2015. Risk assessment of buffer" Heartbleed" over-read vulnerabilities.
In 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 555-562.

Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James
Tuck. 2017. Hardware supported persistent object address translation.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 800-812.

Tiancong Wang, Sakthikumaran Sambasivam, and James Tuck. 2018.
Hardware supported permission checks on persistent objects for per-
formance and programmability. In 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA). IEEE, 466-478.
Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, et al. 2015. Cheri: A hybrid capability-
system architecture for scalable software compartmentalization. In
2015 IEEE Symposium on Security and Privacy. IEEE, 20-37.

David Williams-King, Graham Gobieski, Kent Williams-King, James P
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis,
Junfeng Yang, and William Aiello. 2016. Shuffler: Fast and deployable
continuous code re-randomization. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16). 367-382.
Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Associ-
ation, Santa Clara, CA. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/xu

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoft.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles.

https://doi.org/10.1145/1950365.1950379
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Disclosure and Corruption
	2.2 Persistent Memory Programming Support
	2.3 Hardware-Supported Address Translation

	3 Premises
	4 Reducing Memory Exposure
	4.1 Reducing AMET
	4.2 Fast and O(1) PMO Attachment
	4.3 PMO Access Permission Design

	5 PMO Layout Randomization
	5.1 Motivation
	5.2 PSLR Design

	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Discussions
	8 Related Work
	9 Conclusion
	References

