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Abstract—In the past few years we have developed hardware
computing systems for commercial autonomous vehicles, but
inevitably the high development cost and long turn-around time
have been major roadblocks for commercial deployment. Hence
we also explored the potential of software optimization. This
paper, for the first-time, shows that it is feasible to enable
full level-4 autonomous driving workloads on a single off-the-
shelf card (Jetson AGX Xavier) for less than $1k, an order of
magnitude less than the state-of-the-art systems, while meeting
all the requirements of latency. The success comes from the
resolution of some important issues shared by existing practices
through a series of measures and innovations.

I. INTRODUCTION

Autonomous driving is a thriving sector with great commer-
cial potentials. However, there have been numerous reports
indicating that the high cost has been one of the major
roadblocks that slow down the development and adoption
of autonomous driving in practice [1]. One of the most
costly components in an autonomous vehicle is the compute
hardware on which the autonomous driving software executes.
At present, even partially autonomous (e.g., level-2) driving
systems already require either a high-end accelerator box (e.g.,
NVIDIA Drive [2] or some kind of custom hardware, and the
cost of either is no lower than $10k.

Particularly, in the past few years, we have developed hard-
ware computing systems for commercial autonomous vehicles,
but inevitably the high development cost and long turn-around
time have been major roadblocks for commercial deployment.
Hence we decided to turn to software optimization techniques
with the belief that we are far from fully exploiting the
potential of software optimization. While many companies
have developed hardware accelerators for autonomous driv-
ing workloads, software optimization has not yet sufficiently
explored.

This paper, for the first-time, demonstrates the feasibility
of enabling full level-4 autonomous driving workloads on a
single off-the-shelf card (Jetson AGX Xavier) for less than
$1k, an order of magnitude less in cost and computing power
than the autonomous driving hardware used in the current
industry, while meeting all the requirements of latency. The
success comes from the resolution of some important issues
shared by existing practices through a series of measures and
innovations.

Specifically, we conduct a focused study to optimize
the three deployments of level-4 Autonomous Driving
Applications (ADApp: derived from Autoware [3], showing
the workflow in Figure 1 and the details of the perception
components in TABLE I) on a single off-the-shelf low-end
card, Jetson AGX Xavier [4] from NVIDIA, as part of the
core module of the computing system of the second-generation
level-4 autonomous driving system of our company. The result
overturns some common perceptions held by the industry. For
the first time, we show that it is possible to run industrial-
level level-4 autonomous driving on a single off-the-shelf
card (Jetson) for as little as $1k while meeting all latency
requirements. Meanwhile, this study produces a set of key
insights on the important pitfalls or technical deficits in the
current autonomous driving industry practice and contributes
several practical solutions:

Fig. 1: Workflow of the experimented Autonomous Driving
Applications (ADApp). The tasks are categorized into seven
modules: Sensing (blue), Perception (red), Localization (gray),
Tracking (purple), Prediction (green), Planning (yellow), and
final control output (orange)

• Deficit I: Starvation happens when prior scheduling
schemes are applied to autonomous driving applications
that are deployed to a single low-end device.
- Resolution: We propose a simple solution, just-in-time
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TABLE I: The Perception components of ADApp applications

Application Perception component
ADy288 10 Yolo-V3 models processing ten streams of videos of

288×288 resolution each frame & a 3D point pillar model
ADy416 5 Yolo-V3 models processing five streams of videos of

416×416 resolution each frame & a 3D point pillar model
ADy608 3 Yolo-V3 models processing three streams of videos of

608×608 resolution each frame & a 3D point pillar model

priority adjustment, which resolves the starvation by
adjusting the affinity and priorities of tasks in a just-in-
time manner.

• Deficit II: Some types of accelerators are left substantially
under-utilized due to hardware-oblivious model designs
and implementations.
- Resolution: We employ hardware-aware model cus-
tomization, an approach that significantly increases the
accelerators’ utilization by bridging the gap between
DNN models and multiple types of accelerators.

• Deficit III: Current scheduling algorithms for autonomous
driving cannot deal with hybrid workloads that can em-
ploy multiple types of accelerators.
- Resolution: We propose DAG instantiation based
scheduling, an approach that extends the scheduling of
autonomous driving to meet the needs via accelerator-
based DAG instantiation.

The explorations together lead to the success of making all
of the level-4 autonomous driving applications achieve real-
time performance on a single Jetson card. The success has
multi-fold implications. It entails the need for the industry and
the research community to reexamine some assumptions (on
architecture, power budget, cost, the impact of interference,
etc.) commonly held on autonomous driving systems, which in
turn may lead to a series of new research opportunities, such as
(i) reexamining the entire system design in the backdrop of the
completely different power and space budget, (ii) adding re-
dundancy and reliability to low-end devices in a cost-effective
manner for level-4 autonomous driving, (iii) reconsidering
the research on fine-grained scheduling optimizations under
the new deployment settings, (iv) reexamining the design,
optimization, and deployment of other kinds of autonomous
driving applications (e.g., those based on strongly-integrated
multi-task DNNs).

II. KEY OPTIMIZATIONS

This section presents the three optimizations we developed
that are essential for fitting autonomous driving applications
on resource-constrained devices.

A. Just-In-Time Affinity and Priority Adjustment

This first optimization addresses a flaw in existing sched-
ulers for autonomous driving. The default Linux time-sharing
scheduler is not tailored to autonomous driving. To better
meet the realtime requirements of autonomous driving, prior
work has developed scheduling algorithms customized to
this domain of applications. A representative is ROSCH [5].

Although it showed improvement over the default Linux time-
sharing scheduler on the high-end devices [5], ROSCH gave
miserable performance on the low-end more constrained Jetson
card; as segment 2 of Table II shows, all three ADApps miss
all deadlines under ROSCH. They actually work better on
the default Linux scheduler, although the 2D perception still
misses all deadlines there.

Our analysis reveals that the reason comes from scheduling
starvation caused by the priority settings in ROSCH. In
ROSCH, every task is put into a real-time queue and has
a statically assigned priority as calculated by the HEFT-like
algorithm [6]. Each task is a process consisting of multiple
threads. All these threads inherit the priority of the process.
As a result, the threads of the Sensing node, for their higher
priorities, hog the CPU core throughout the execution. The
Perception nodes on the same core are starved. As the other
modules depend on the output of the Perception module,
they make no progress either. The exception is the Planning
module. The module always gives outputs in a fixed frequency;
as it receives no updates from the other modules, its outputs
are out of date and useless. Such a problem does not show
up in high-end devices where all main modules can get their
dedicated computing units.

Algorithm 1 outlines our improved scheduling algorithm.
Changes are made when a work item is put into the input
queue of a task, and the main thread of that task is about to be
invoked to process that item. At that moment, the main thread
of that task is set to SCHED FIFO, and its priority is changed
to p, the level calculated by the default HEFT algorithm [6].
Please note, the changes are made to only the main thread,
and the other threads of that task keep the default priority.
As soon as the main thread finishes processing the item, it
is set back to SCHED Other, and its priority is reset to the
default. In this JIT scheme, the time for a node to hold high
priority is reduced, and also the non-critical assistant threads
are not promoted to a high priority, which also reduces the
core contention.

We only assign real-time priority to the main sub-task in
each node, so there is small number of real-time sub-tasks
need to be assigned to real-time scheduler. After doing this,
the Nvidia AGX Jetson Xavier has enough CPU resources to
handle the entry nodes of the Sensing module. Starvation that
happens in ROSCH does not happen.

B. Hardware-Aware Model Customization

Our second optimization transforms the DNN models to
make them better utilize the accelerators, particularly the
Deep Learning Accelerators (DLAs) on Jetson. DLAs are
special deep learning accelerators designed to accelerate some
common operations in DNNs. For a DNN to take advantage
of DLAs, however, the applications must be written with
TensorRT in some required form. TensorRT [7] is a library
developed by NVIDIA for faster DNN inference on NVIDIA
devices. Although current autonomous driving applications
(e.g., Autoware) try to take advantage of accelerators, they
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TABLE II: Execution time (mean± std) of each module in the ADApp applications on Jetson AGX Xavier and the miss rates.
The ∞ represents timeout. The miss rate of a module is how often the module misses its expected latency (shown in the parentheses in
the table header)—up to 10% over is allowed to tolerate system noises. The column Miss Rate shows the miss rates of the most sluggish
modules (whose times are prefixed with an ∗), that is, the modules with the largest miss rate in the application.

Application Running Time of Each Module (ms) [expected latency in brakets] Miss Rate
Sensing 3D Percept 2D Percept Localization Tracking Prediction Planning
[100ms] [100ms] [100ms] [100ms] [100ms] [100ms] [10ms]

1. Default Linux Time Sharing

ADy288 14.3 ± 5.2 94.7 ± 12.8 * 193.3 ± 17.5 89.5 ± 30.5 0.9 ± 0.8 0.4 ± 1.0 1.0 ± 0.1 100%

ADy416 15.3 ± 5.1 90.2 ± 12.0 * 167.6 ± 12.7 89.1 ± 29.1 0.9 ± 0.7 0.5 ± 0.9 1.1 ± 0.2 100%

ADy608 14.8 ± 4.8 89.0 ± 18.7 * 192.8 ± 16.2 91.5 ± 31.2 1.1 ± 0.7 0.4 ± 0.9 1.1 ± 0.2 100%

2. Default ROSCH

ADy288 8.8 ± 1.0 * ∞ * ∞ * ∞ * ∞ * ∞ 1.1 ± 0.8 100%

ADy416 8.5 ± 0.7 * ∞ * ∞ * ∞ * ∞ * ∞ 1.3 ± 0.9 100%

ADy608 8.5 ± 0.8 * ∞ * ∞ * ∞ * ∞ * ∞ 1.1 ± 0.7 100%

3. JIT Adjustment + DAG Instantiation-Based Scheduling

ADy288 8.5 ± 0.9 94.6 ± 13.4 * 194.7 ± 16.3 43.5 ± 10.2 1.0 ± 0.7 0.6 ± 1.1 1.2 ± 0.4 100%

ADy416 8.4 ± 1.0 91.7 ± 11.2 * 166.8 ± 11.4 45.3 ± 11.3 0.8 ± 1.0 0.6 ± 1.1 1.0 ± 0.4 100%

ADy608 8.7 ± 0.7 88.9 ± 17.6 * 190.9 ± 17.9 47.2 ± 9.9 1.1 ± 0.6 0.5 ± 0.9 1.0 ± 0.5 100%

4. JIT Adjustment + Hardware-Aware Model Customization + DAG Instantiation-Based Scheduling

ADy288 8.4 ± 1.2 * 89.0 ± 15.3 95.6 ± 5.1 46.3 ± 9.8 0.9 ± 0.9 0.7 ± 0.9 1.0 ± 0.4 0%

ADy416 9.0 ± 0.9 72.0 ± 9.0 88.1 ± 4.3 44.9 ± 10.7 1.0 ± 0.8 0.6 ± 0.9 1.3 ± 0.2 0%

ADy608 8.8 ± 1.2 80.8 ± 10.6 * 98.1 ± 5.0 46.4 ± 11.0 1.0 ± 0.7 0.4 ± 1.1 1.1 ± 0.3 0%

Algorithm 1 Just-in-time HEFT algorithm
1: Set the computation costs of tasks and communication costs of edges with

mean values
2: Compare rankn for all tasks by traversing graph upward, starting from

the exit task.
3: Sort the tasks in a scheduling list by non-increasing order of rankn

values.
4: Warp main sub-task in each task by real-time priority adjustment.
5: while there are unscheduled tasks in the list do
6: for each processor pk in the processor-set pk ∈ Q do
7: Compute EFT (ni, pk) value using the insection-based scheduling

policy
8: Assign main sub-task in task ni to the processor pj that minimizes

EFT of task ni.
9: Setup static priority for each wrapped sub-task in each pro-

cessor according to their EFT in decreasing order.
10: end for
11: end while

often fall in short for missing some subtle properties of the
accelerators.

For the three ADApps, for example, our studies show that
using DLAs, they actually run slower than without using DLAs
on the Jetson card. More specifically, the execution times
of the YOLOv3 models and PointPillars both increase. Our
analysis shows that the reason is that most of layers in the
YOLOv3 could not be supported by DLAs. Those unsupported
layers will fall back to GPU to run. This causes not only more
time overhead on YOLOv3, but also increases the interference
to the executions of PointPillars on GPUs. We augmented the
DNN models in ADApps based on the limitations of the DLAs
on Jetson. More specifically, we identified the DNN layers in
the DNN models that are not supported by TensorRT (the API
used to program DLAs) and then replaced those unsupported
layers with those that TensorRT supports and provide similar
functionalities. One example is to replace the LeakyReLU
activation functions in every convolution block in the Yolov3
and Yolov3-SPP models with the standard Relu activation
function. After the accelerator-conscious model augmentation,
we retrained the DNN models to ensure that the models give
the same accuracy as the original models do. Our experiments

show that the accuracy differences are within ±0.015.

Algorithm 2 DAG Instantiation-Based Scheduling
1: D: the DAG
2: A = {ai} : the set of accelerators of one or more kinds
3: V = {vi} : the set of task nodes in D
4: E = {ei} : the set of edges in the D
5: bi,j : 1 if vi can run on aj , 0 if vi cannot run on aj
6: s: a valid assignment from V to A, that is, {bi,s(i) = 1 for each vi}
7: S = {s} : the set of valid assignments
8: Measures = {}
9: for each s in S do

10: taskPerformance← measure the performance of tasks under s in
the default schedule

11: d = Instantiate D with taskPerformance
12: sch = scheduleAlgorithm(d)
13: appPerf ← measure the performance of the application under sch
14: Measures.add(sch, appPerf)
15: end for
16: finalSch = Measures.bestPerf()

C. DAG Instantiation Based Scheduling

With the accelerators’ utilization potential unlocked, the
next question is to co-schedule the DNN models to the
computing units. The design of ROSCH (and HEFT) assumes
every node in the DAG can run on any computing unit, which
is not the case for the autonomous driving workload where
some nodes can run only on CPU, part of some other nodes
can run on GPU or DLA. To address the issue, we extend the
DAG scheduling algorithm in the previous section to make
it workable for systems with multiple types of accelerators.
The pseudo-code is shown in Algorithm 2. The design follows
two principles (i) being practical (ii) maximizing the quality
of the final schedule. An observation is that as our target is
a single low-end device, the number of accelerators is very
limited (three in the case of Jetson AGX Xavier). Our design
hence favors simplicity and result quality over scalability. The
basic idea is to enumerate all the possible viable assignments
of the task nodes to the accelerators. For each assignment,
we instantiate the DAG with the measured performance of
the tasks and the communication cost, and then run the
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scheduling algorithm in the previous section on that DAG
to obtain a schedule. In the end, the schedule that gives the
best performance is chosen. The assignment corresponding to
the DAG gives the final assignments of the task nodes to the
accelerators.

III. RESULTS AND IMPLICATIONS

Segments 3 and 4 in Table II report the performance of
the three autonomous driving applications after the first or all
three optimizations are applied. The JIT priority adjustment
eliminates the starvation problem of the default ROSCH
scheduling, while the other two optimizations significantly
reduce the execution time of the bottleneck, the 2D perception.
After the application of all the optimizations, all the modules
in the applications can now complete their work within the
expected latency (As the table caption marks, 10% over the
expected latency is tolerable as such a slack allows real
systems to tolerate random fluctuations caused by system
noise in real executions.) The applications meet the real-time
requirements entirely. Compared to the results in Segment 1,
the 3D perception sees about 1.5× time reduction, and the 2D
perception sees 2-2.2× time reduction.

It is worth noting that besides the real-time performance
requirement, a level-4 autonomous driving system must have
enough redundancy, reliability and security to ensure safety.
Our autonomous driving system is a full system, the design
of which consists of the implementations of security and re-
dundancy (both heterogeneous and homogeneous approaches)
besides the core module presented in the paper. Its software
stack consists of a middleware to facilitate communications
between nodes, as well as a Linux operating system to provide
basic system services. This paper intentionally focuses the
presentation of the core module because it dominates the
computing resource usage and execution time. Our propri-
etary middleware, for instance, is based on highly optimized
nanomsg1, incurring less than 3% of CPU overheads and
communication latency.

Besides pointing out a promising path for the industry to
drastically reduce the cost and power of autonomous driving
systems, the overturning of the common perceptions by this
work also suggests some new research opportunities. Some
examples are as follows:

• Architecture design: As the cost and power consumption
drop dramatically, it would be valuable to reexamine the
design of the entire autonomous driving architecture in
terms of the budget allocation for various components,
reinforcement of security or reliability, and so on.

• Software design: The changed assumptions on the cost
and computing resource suggests the need for rethinking
the design of the autonomous driving software, such
as the complexities and structures of adoptable DNNs,
the inter-component communication, synchronizations,
scheduling, and so on.

1https://nanomsg.org/documentation.html

• Optimizations: There have been lots of research on the
optimization of certain points in autonomous driving.
They may be worth reexamination. For instance, as
everything now runs on a single card, inter-card commu-
nication becomes less important, but how to effectively
improve the reliability of the low-end device becomes
more important. The many optimizations proposed before
may work differently in this single-card setting. The
research to schedule each layer of a DNN on GPUs to
strike an accuracy-power-speed tradeoff [8], for example,
may now need to consider the (core, data path, and
memory) contentions from other DNN models running
on both GPUs and other accelerators (e.g., DLAs).

IV. CONCLUSION

With the belief that the potential of software optimization
is far from being fully exploited, in this paper, we present
our practical experiences of enabling full level-4 autonomous
driving workloads, through software optimization only, to
achieve real-time performance on a single low-end card at a
cost an order of magnitude lower than the industry norm. We
achieved this by addressing three major deficits in the current
practices through several practical solutions, including just-in-
time affinity and priority adjustment, hardware-aware model
customization, and DAG instantiation based scheduling. This
work overturns the assumption that hardware acceleration is
required to achieve better performance and energy efficiency,
and serves as a foundation, especially for the autonomous
driving industry, of a promising path for drastically lowering
the cost and power consumption of commercial autonomous
vehicles.
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