Temporal Exposure Reduction Protection for Persistent Memory

Yuanchao Xu*, Chencheng Ye', Xipeng Shen*, Yan Solihin?
*North Carolina State University, THuazhong University of Science and Technology,iUniversity of Central Florida,

I. INTRODUCTION

The emerging persistent memory (PM) is increasingly sup-
plementing and substituting DRAM as main memory, due to
PM’s higher density, better scaling, lower idle power, and non-
volatility, while retaining byte addressability and random acces-
sibility [2]. The long-living nature and byte-addressability of per-
sistent memory (PM) amplifies the importance of strong memory
protections. First, persistent data in Persistent Memory Object
(PMO) is now subject to memory safety vulnerabilities (e.g.
accidental/malicious read/write). Second, worse than DRAM, data
corruption is permanent in a PMO. Third, data in a PMO is long
lived; its existence and structure are preserved across process
runs. The longevity, plus direct byte-addressability, makes it more
vulnerable as attacks to a PMO could span across executions of
the same or different applications. We anticipate further growth
of memory corruptions and disclosures targeting PMOs, and thus
emphasize the need for practical primitives that eliminate or
reduce such threats. Despite decades of research, unauthorized
memory reads and writes are still among the most common
security attacks [1], [4], [5]. A recently work combines isolation
and re-randomization to provide better protection and efficiency
for PM [6].

In our HPCA 2022 paper®, it develops temporal exposure
reduction protection (TERP) as a framework for enforcing mem-
ory safety. Aiming to minimize the time when a PM region is
accessible, TERP offers a complementary dimension of memory
protection. The paper gives a formal definition of TERP, explores
the semantics space of TERP constructs, and the relations with
security and composability in both sequential and parallel execu-
tions. It proposes programming system and architecture solutions
for the key challenges for the adoption of TERP, which draws on
novel supports in both compilers and hardware to efficiently meet
the exposure time target. Experiments validate the efficacy of the
proposed support of TERP, in both efficiency and exposure time
minimization.

II. PROGRAMMING SUPPORT

As a class of protections in a dimension complementary
to existing memory protections, rather than seeking to protect
against specific vulnerabilities, TERP makes unauthorized reads
or writes to data in PMOs difficult by applying the principle of
least privileges.

Temporal protection: If a memory attack requires a memory
region to be stationary (i.e. location unchanged) and accessible
for at least ¢ time to succeed, the attack can be prevented as long
as the exposure window of the memory region is smaller than ¢,
and locations of the region changed before ¢ elapses.

EW-Conscious Semantics: We propose exposure window
(EW) conscious semantics or EW-conscious semantics in short. It

“Full Paper: Yuanchao Xu, et al., “Temporal Exposure Reduction Protection
for Persistent Memory” in HPCA 2022 [7].

also requires non-overlapping attach-detach pairs, but only within
a thread. It considers thread-level permissions and process-level
address mappings together, allows implicit lowering of TERP
constructs in a TERP poset, and supports both function and thread
composability as well as automatic deployment.

Thread 1

Thread 2 Thread 3

7”'\

P - - - (no attach)
Invalid

,:5t5<—

. ___(permission)/ L

* Thread Exposure
* Window (TEW)

Legend: Exposure
Window (EW)
Fig. 1. An example of EW-conscious semantics.

An example of the semantics is shown in Figure 1. Suppose that
addresses A, B and C reside in PMOI1. First, Thread 1 attaches
PMOI1 with read permission. Since PMO1 was unmapped, the
attach is performed to map PMOI1 to the address space. The
subsequent Id A is permitted but st B is denied due to insufficient
thread permission. For Thread 2, the attach adds intended read
and write thread permission and hence the subsequent st B is
permitted. After that, the detach call from Thread 1 removes its
permission, but does not detach the PMO as thread 2 can still
access it. The subsequent Id C is denied access. The detach call
from Thread 2 removes its permission and detaches PMO1 from
the process address space. The subsequent st C is denied and
generates a segmentation fault since the PMO is no longer mapped
to address space. For Thread 3, all accesses are denied because
the thread never makes an attach call prior to the accesses.

III. DESIGN

The second key challenge for TERP adoption is how to make it
easy to use, while simultaneously offering the desired protection
without imposing any substantial performance overhead?

Automatic Constructs Insertion: The EW-conscious TERP
semantics requires non-overlapping and matching attach and
detach calls on every path (in a thread). Requiring the programmer
to manually insert such calls would be a burden, hence we propose
to automate it. The compiler’s goal is to insert attach and detach
completely and correctly, while meeting the target EW length.
We develop a region-based code analysis to do it efficiently.

The possible execution paths is exponentially large due to the
number of branches. we make an observation that inserting a
detach call changes the PMO attachment state back to the initial
state (PMO is not attached) regardless of paths leading to the
detach point. If at a confluence point, the state is known to be
detached, the control flow graph can be split into two regions:
one with paths preceding the confluence point and one following
it. These regions can then be considered independently, hence
reducing the analysis complexity. For each region, attach calls

can be inserted to each path so that attach and detach pairs
are maintained. The detailed algorithm is in Section-V-A of the
original paper.

Architecture Design: Our architecture support seeks to reduce
overhead. First, we observe that static analysis often detaches
too soon, only to attach again soon afterward. This presents an
opportunity to combine two closely spaced EWs into one. Second,
we note that an attach and detach call may be executed in one of
two ways: (1) performed fully to map or unmap into/from address
space, (2) performed partially to grant or revoke thread access
permission. While both ways can be implemented as system call
handling code, the latter can be accelerated. We refer to the former
opportunity as window combining and the latter as conditional
attach/detach.

Circular Buffer

PMOID TS Ctr DD
(10b) (10b) (14b) (1b)
Head 1 3 0 |1
2 5 3 |0
o Sweep
3 12 1 |0
4 5| 2 |o| @
Increase 14l l«—Attach()
Every 1ms o
Cycle Timer Self-detach() or
count (32b) randomize
(@
CONDAT CONDDT
(PMOID, Perm) (PMOID)

Add entry
Ctr=1, DD=0 No

Revoke thd perm
Yes Decrement Ctr No

Set thd perm Case 4: Partial
Attach() call Set thd perm | | Set thd perm detach Detach() call Revoke thd perm
T Increment Ctr | |Ctr=1 Remove entry DD=1

Case 1: first DD =0

attach Case 2: subseq - Case 5: Full Case 6: Delayed

attach Case 3: silent detach detach
attach
() ©

Fig. 2. Circular buffer (a), and the logic for conditional attach (b) and detach (c).

For window combining, we use a circular buffer shown in
Figure 2(a). Each entry keeps the PMO ID, a timestamp (TS)
that records the time of last PMO attach, a counter (Ctr) which
tracks the number of threads that have made an attach call, and
a delayed detach (DD) status which indicates if a detach has
been delayed. A newly attached PMO is added at the tail 1. A
timer is incremented at a coarse granularity, such as every lus 2.
Periodically, we sweep the buffer from head to tail 3, to identify
PMOs for which a detach call has been made but they have not
been detached yet, as indicated by DD = 0. Then, the counter is
checked 4. If the counter is zero, the detach() system call is made
to fully detach the PMO. Otherwise, some threads still access the
PMO, hence the PMO is randomized. Randomization requires all
threads to be suspended and appropriate structures invalidated or
updated (e.g., TLB shootdowns and page table update).

To support conditional attach/detach call, we add two user-
space instructions, conditional attach (CONDAT) and conditional
detach (CONDDT). CONDAT’s two source operands include a PMO
ID and a permission request (R or RW). CONDDT only takes PMO
ID as its source operand. Our compiler algorithm performs static
analysis and inserts CONDAT and CONDAT into code in place of
actual attach or detach system calls. Figures 2(b) and (c) show
how the two instructions are executed.

IV. EVALUATION
Methodology: Our simulator is built on Sniper, a cycle-

accurate X86 simulator. We implement an LLVM pass [3] that
uses the region-based analysis in LLVM to insert conditional

Attach Detach mm= Rand mmm Cond. mmm Other

400% | MM (40us)

300% TM (2us)

200%

100%

20%

E ™

L 16% i

§ 40us 1 E 1

O 12% 80us Il]]

1
8% i 160us i !] l
4 B T O

4% EH 1] H =§]
0% T T T T T T
0 mcf Ibm imagick nab Xz avg

Fig. 3. Single-thread multi-PMO execution time overheads for SPEC.

instructions (magic instructions in Sniper), producing protected
programs.

Results: The execution time overheads for 40us, 80us, and
160us EWs are shown in Figure 3. The values are averaged
over all PMOs. SPEC benchmarks have multiple PMOs and
PMO accesses make up for a large fraction of total accesses.
Hence, the figure shows more than 300% overheads when all
attach and detach are performed through system calls in the TM.
Our optimizations turn 96.8% attach and detach silent, hence
reducing the overheads to only 14.8% for 40us EW, and 7.6%
for 160us EW, representing more than an order of magnitude
reduction. Compared with MERR (MM), our whole design is
able to merge closely-spaced attach/detach sessions and introduce
TEW to further augment security while lowering the overheads
from 156.3% to 14.8%.

V. IMPACTS
We highlight two key contributions of TERP. First, TERP

presents the first programming support for intra-process isolation.
The semantic explorations, compiler support, and architecture
support are applicable to all intra-process (e.g, MPK) or intra-
enclave isolation. Second, TERP demonstrate the performance,
programmability, and security benefits of region-based memory
management. This encourages researchers to rethink region-based
memory allocation for security.

REFERENCES

[1] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-
oriented programming: On the expressiveness of non-control data attacks,”
in 2016 IEEE Symposium on Security and Privacy (SP). 1EEE, 2016, pp.
969-986.

[2] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,” IEEE
micro, vol. 30, no. 1, pp. 143-143, 2010.

[3] LLVM, “Writing an llvm pass.” https://llvm.org/docs/WritingAnLLVMPass.
html, online; accessed August, 2020.

[4] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications,” in 2015 IEEE Symposium on Security
and Privacy. 1EEE, 2015, pp. 745-762.

[5] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in 2013 IEEE Symposium on Security
and Privacy. 1EEE, 2013, pp. 574-588.

[6] Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving security of persistent
memory objects via efficient memory exposure reduction and randomization,”
in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp. 987—
1000.

[71 Y. Xu, C. Ye, X. Shen, and Y. Solihin, “Temporal exposure reduction
protection for persistent memory,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 1EEE, 2022, pp. 908—
924.

https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html

	Introduction
	Programming Support
	Design
	Evaluation
	Impacts
	References

