PCCS: Processor-Centric Contention Slowdown Model for Heterogeneous System-on-Chips

Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, Jeffrey Vetter

Heterogenous System-on-Chips (SoCs)

Smartphones

Autonomous Vehicles

Robots

Diversely Heterogeneous Architectures

More than 40 intellectual property (IP) blocks in A11!

Apple A11 die photo

Source: http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Heterogenous SoC Example

5-processor unit (PU) NVIDIA Jetson Xavier

Heterogenous SoC Example

5-processor unit (PU) NVIDIA Jetson Xavier

Application

Commercial SoCs are Challenge To Design

Contributions

- Built the fundamental understanding of memory contention on SoCs
- Designed processor-centric contention-aware slowdown model
- Predicted accurate memory contention effects, improving 70% prediction accuracy over the state-of-the-art work
- Identified the real bottleneck of SoCs at pre-silicon stage, saving up to 50% frequency or number of cores

Outline

- Background
- Observation
- Architectural analysis
- PCCS model
- SoC design guidance

Computer Architecture & Performance Models

Performance model vs. Simulation

- More insights
- Less efforts and time
- Don't need architectural details

[1] Mark D. Hill, et al., Gables: A Roofline Model for Mobile SoCs, HPCA 2019

Something Gables Missing

Observations

Observe task 1's
performance:Task 1Vary the total external
bandwidth demand
from other tasksTask 2PU1 (GPU)from other tasksPU 2 (CPU)

Vary the task 1 BW demand

Task 3

PU 3 (DLA)

Outline

- Background
- Observation
- Architectural analysis
- PCCS model
- SoC design guidance

Architectural analysis

Hypothesis: Caused by fairness control in memory system

Purpose of Fairness Control

Purpose of Fairness Control

Fairness control is important in memory controller

- Reduce denial of memory service vulnerabilities
- Improve overall throughput
- Improve quality-of-service

Bandwidth Partitions with Fairness Control

ATLAS[1]: Similar attained service time

Memory Controller Policy Simulation

Methodology:

Implement memory controller policies in Ramulator[1]

Observe task 1's performance:

Vary the total external bandwidth demand for other tasks

Vary task 1 bandwidth demands; Repeat Step 2

Memory Controller Policy Simulation

Outline

- Background
- Observation
- Architectural analysis
- PCCS model
- SoC design guidance

Processor-Centric Contention-aware Slowdown Model (PCCS)

PCCS parameters

Outline

- Background
- Observation
- Architectural analysis
- PCCS model
- SoC design guidance

PCCS Model Usage

Case study

Program: streamcluster in Rodinia Benchmark Suite

Objectives: Find appropriate frequencies of the GPU within 5% and 20% co-located slowdown on Xavier when external BW demands are 20GB/s, 40GB/s and 60GB/s

Methodology: PCCS model usage

Validation: Change the power settings of Xavier to obtain the ground truth

Baseline: Gables model

Results on streamcluster benchmark

Objective: within 5% slowdown

External Memory Bandwidth Demands (GB/s)

External BW demand (GB/s)		20	40	60	Average	20	40	60	Average
		Errors							
	PCCS				Gables				
Maximum Allowed Slowdown	5%	2.4	3.1	1.6	2.4	4.8	35.4	41.9	27.4
	20%	1.3	1.7	3.6	2.2	3.8	36.7	49.1	29.9

Conclusion

- Built the fundamental understanding of memory contention on SoCs
- Designed three-region processor-centric contention-aware slowd Thank you for
- Predicted accurate memo., content effects, improving 70% prediction accuracy over the state-of-the-art work
- Identified the real bottleneck of SoCs at pre-silicon stage, saving up to 50% frequency or number of cores

