
PCCS: Processor-Centric Contention-aware Slowdown Model
for Heterogeneous System-on-Chips

Yuanchao Xu
North Carolina State University
Raleigh, North Carolina, USA

yxu47@ncsu.edu

Mehmet E. Belviranli
Colorado School of Mines
Golden, Colorado, USA
belviranli@mines.edu

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

Jeffrey Vetter
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

vetter@ornl.gov

ABSTRACT
Many slowdown models have been proposed to characterize mem-
ory interference of workloads co-running on heterogeneous System-
on-Chips (SoCs). But they are mostly for post-silicon usage. How to
effectively consider memory interference in the SoC design stage
remains an open problem. This paper presents a new approach to
this problem, consisting of a novel processor-centric slowdown mod-
eling methodology and a new three-region interference-conscious
slowdownmodel. Themodeling process needs nomeasurement of co-
running of various combinations of applications, but the produced
slowdown models can be used to estimate the co-run slowdowns
of arbitrary workloads on various SoC designs that embed a newer
generation of accelerators, such as deep learning accelerators (DLA),
in addition to CPUs and GPUs. The new method reduces average
prediction errors of the state-of-art model from 30.3% to 8.7% on
GPU, from 13.4% to 3.7% on CPU, from 20.6% to 5.6% on DLA and
demonstrates much improved efficacy in guiding SoC designs.

CCS CONCEPTS
• Hardware → Emerging architectures; • Computer systems
organization → System on a chip; • Computing methodolo-
gies →Model development and analysis.

KEYWORDS
System-on-Chips, Accelerator Architectures, Performance Models

ACM Reference Format:
Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter. 2021.
PCCS: Processor-Centric Contention-aware Slowdown Model for Het-
erogeneous System-on-Chips. In MICRO’21: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3466752.3480101

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480101

1 INTRODUCTION
As domain specialization is proven to be a promising path to achieve
high performance at low energy [18], integrated shared memory
heterogeneous architectures have coupled CPUs with other ac-
celerators on the same die to serve the demanding needs of au-
tonomous, mobile, and edge computing. System on chips (SoC), such
as NVIDIA’s Jetson AGX Xavier [3], Qualcomm’s SnapDragon [17],
and Apple’s A1X Bionic [39], embedded specialized processing
units, such as vision processors (PVA), deep learning accelerators
(DLA), and digital signal processors (DSP), under the same mem-
ory bus to efficiently run a variety of computations with distinct
characteristics.

Figure 1: The SoC design problem focused in this study.

The diversity of processing units (PU) amplifies the complexity
in SoC design; an issue studied in this work. Figure 1 illustrates
the specific problem. An SoC design team needs to build an SoC
to support the execution of some important workloads, such as
an autonomous vehicle workload that consists of a set of related
modules (e.g., object recognition, trajectory prediction, etc.). The
team has access to a set of PUs as well as some existing SoCs, which
each is equipped with some of the PUs. The team needs to decide
on the design of the new SoC that best fits the workload of interest.
Specifically, they need to determine (1) what PUs should be put onto
the SoC, (2) how many cores of each PU, and (3) what frequencies
or other configurations each PU should use. (4) what total memory
bandwidth the SoC should have.

The team may be able to run every module (or kernel) of the
workload on the PUs on existing SoCs to measure the performance
of the module’s standalone executions on different types of PUs.
The challenge is on figuring out how the modules and the workload
would perform if multiple apps are co-run on a new SoC. As PUs on
a SoC typically share the memory and bus, the co-location would

https://doi.org/10.1145/3466752.3480101
https://doi.org/10.1145/3466752.3480101
https://doi.org/10.1145/3466752.3480101


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

External memory pressure (GB/s)

E
ffe

ct
iv

e 
B

W
 P

er
ce

nt
ag

e 
(%

)

40

60

80

100

0 25 50 75 100 125

CPU GPU DLA

A B C

External memory bandwidth demands (GB/s)

E
ffe

ct
iv

e 
P

er
f. 

P
er

ce
nt

ag
e 

(%
)

Figure 2: The percentage of the requested memory BW that
is met on a processor under various degrees of external
memory pressure. The requested memory bandwidths are 30GB/s,
93GB/s, and 127GB/s on the DLA, CPU, and GPU respectively. The peak
memory BW of the SoC (NVIDIA Xavier AGX) is 137GB/s. A, B, C on the
X-axis mark the points where requested BW + external BW = DRAM peak
BW, for GPU, CPU, DLA respectively. The effects of contention are being
observed even when the sum of requested BW and the external memory
pressure is less than the total DRAM BW.

incur memory interference and hence performance degradations
of various degrees as Figure 2 illustrates.

Many prior performance models have included memory inter-
ference into considerations [9, 10, 12, 15, 16, 23, 27, 29–31, 38, 41,
42, 46, 47]. They are however for post-silicon runtime optimizations
rather than the usage in the SoC design stage. Among efforts in cre-
ating performance models to guide hardware designs [7, 19, 40, 48],
the state of the art work is Gables [19]. The work is valuable as
the first attempt to integrate memory interference into Roofline
models. Its proposed performance model is however remarkably
rough, with many oversimplifications. It, for instance, assumes
available memory bandwidth is proportionally distributed among
the heterogeneous PUs. Evidence has shown large errors from those
simplifications. Themodel for example suggests zero slowdowns for
co-running applications if the sum of their standalone-run memory
bandwidth consumption is less than the total memory bandwidth
of the SoC, which contradicts the empirical results shown in Fig-
ure 2. How to effectively handle memory interference in SoC design
remains a problem yet to be solved.

This paper proposes a new approach, named processor-centric
contention-slowdown modeling (PCCS), to address this important
problem. PCCS is based on a systematic analysis of the impact of
co-run memory contention, and comprises a new methodology and
a new slowdown model.

• Analysis: We conduct a series of experiments to observe the
influence of co-run memory contention. The observations
contradict the proportional distribution of memory band-
width assumption the prior SoC co-run model [19] builds
on. Through an in-depth analysis, we validate that fairness
control in memory controllers is an important reason for
the observed co-run slowdowns—a factor neglected by prior
SoC co-run modeling [19].

• Methodology: The new approach leverages a source-
obliviousness insight, that is, the influence external mem-
ory interference has on the performance of an application

is determined by the degree of interference, and is largely
oblivious to what the sources of the external traffic are. Led
by the insight, the new approach employs a processor-centric
modeling scheme, which uses a set of calibrators (controllable
memory traffic generators) to assist the empirical measure-
ments in determining the model parameters. The modeling
process needs no measurement of co-runs of various combi-
nations of applications, but the produced slowdown models
can be applied to arbitrary applications.

• Slowdown model: The new slowdown model is a three region
interference-conscious model, which classifies an application,
based on its algebraic computation intensity, into one of
three categories, each of which features a distinctive class of
slowdown models. The model is processor-centric, charac-
terizing the architecture behavior in the presence of external
memory bandwidth demands. Piecewise formulation is used
in model formulation to ensure accuracy.

We evaluate the general applicability of our slowdown model
and demonstrate that it is precise enough for guiding SoC design
explorations. We validate our model on a set of Rodinia bench-
marks and some deep-learning operations on two real devices, an
NVIDIA’s Jetson AGX Xavier autonomous SoC [3] which contains
three different PUs (8-core ARM CPU, Volta GPU, and deep learn-
ing accelerator (DLA)), and a Qualcomm’s SnapDragon 855 mobile
SoC [6] equipped with 8-core Kryo CPUs and Adreno™640 GPUs.
The new method reduces average prediction errors of the state-
of-art model from 30.3% to 8.7% on GPU, from 13.4% to 3.7% on
CPU, from 20.6% to 5.6% on DLA. In use case studies, the results
help avoid over-provisioning PUs or their frequencies, saving up to
50% area (with reduced cores) or 52.1% power budget (with reduced
frequencies) over the suggested configurations by prior models,
while maintaining the same level of actual co-running workload
performance. The results confirm the effectiveness of the proposed
method and models in bridging the gap in the current support of
heterogeneous SoC designs.

2 MEMORY INTERFERENCE
CHARACTERIZATION

The first step in building our proposed slowdown model is to un-
derstand and characterize the contention occurring when kernels
with different memory access behaviors are co-located on different
PUs.

2.1 Target Architecture
Our slowdown model targets the heterogeneous shared memory
(HSM) SoC, which has multiple types of processors, a memory con-
troller interface to shared DRAM memory, and a high-bandwidth
on-chip interconnect. An example is NVIDIA’s Jetson AGX Xavier
architecture [3], shown in Figure 4. It is a recent HSM-SoC target-
ing autonomous computing applications. Xavier integrates 8-core
ARM v8.2 CPU, 512-core NVIDIA Volta with 64 TensorCores, an
NVIDIA Deep Learning Accelerator (DLA), a Programmable Vision
Accelerator (PVA) and multimedia accelerators on the same die, and
they share the same system memory. The memory uses channel
interleaving to construct 256-bit width from 8 32-bit channels. The
theoretical peak bandwidth is 136.5GB/s.



PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) (b) (c)

Figure 3: The performance of synthetic programs under different memory pressures. The standalone requested memory BW
varies from 10 GB/s to 30 GB/s in (a), from 40 GB/s to 80 GB/s in (b) and from 80 GB/s to 100 GB/s in (c).

CPU Complex

Carmel Carmel
2MB L2

4MB L3

Volta GPU

CUDA Tensor
128KB L1

512KB L2

DLA

Convolution 
Buffer

Convolution 
Core

Post-Processing
Core

PVA

MM-Accelerators

System Fabric

Memory Controller

LPDDR4X

I/Os

Figure 4: The NVIDIA Jetson AGX Xavier Architecture

The target HSM-SoC has two common properties: (i) PUs oper-
ate concurrently. (ii) The available memory bandwidth is shared
among PUs. Our analysis focuses on the common scenarios where
execution of a kernel spans only one type of PU and a PU runs only
one kernel at a given time.

2.2 Observations
We first introduce a term: the bandwidth demand of a kernel on a PU
is the memory bandwidth requested by that kernel in its standalone
execution on that PU without kernels running on other PUs. We
identify three main factors that affect co-run slowdown, that is, the
slowdown of a kernel 𝐾𝑖 running on PU 𝑃 𝑗 when other kernels are
running on other PUs:

• The maximum standalone achieved speed that a specific PU
𝑃 𝑗 used by the kernel 𝐾𝑖 can achieve.

• The bandwidth demand of kernel 𝐾𝑖 on PU 𝑃 𝑗 .
• The total bandwidth demanded of other kernels running on
other PUs.

To understand how an HSM-SoC behaviors under these three
factors, we experiment with the kernels in the Roofline Model
construction suite [1], which is a collection of synthetic vector
add and multiplication kernels with adjustable memory bandwidth
(BW) demands and operation intensity. We use the GPU and CPU
of the NVIDIA’s Xavier. We vary the BW demand of each of the
kernels from 10GB/s to 100GB/s with a 10GB/s increase. For each

experiment, we also create a synthetic external BW demand that
varies from 0 to 100GB/s and co-run it with the experimented kernel.

The results are shown in Figure 3. The y-axis is the percentage
of the achieved standalone speed of the kernel of interest. The x-
axis is the external memory BW demand. (The actual external BW
pressure is equal to or lower than the demand.)

The workloads fall into three categories.

(1) Figure 3 (a) shows the observations on the kernels that re-
quest only a small amount of memory BW. Their achieved
speed drops slightly as external BW demand increases.

(2) Figure 3 (b) shows the kernels that demand amore significant
amount of BW (i.e., 40-80 GBps), and the achieved speed
curves exhibit a three-stage trend:

(a) The curves start with a relatively flat segment, showing
the little influence of external pressure on the achieved
speed.

(b) The curves enter a fast near-linear dropping region when
the external BW demand increases beyond a certain level.

(c) The curves then flatten out as the external BW demand
exceeds a certain level.

(3) Figure 3 (c) shows the observations of the kernels that re-
quest a large amount of BW. Even when there is just a small
external BW demand, the achieved speed reduces signifi-
cantly. But when the external BW demand goes beyond a
certain level, the curves flatten out.

The observations contradict the proportional distribution of
memory BW assumption the prior SoC co-run model [19] builds
on. For instance, according to that model, there should be no slow-
downs at the beginning part of the curves in Figure 3 (b,c) as the
total requested BW has not yet reached the peak BW of the system,
and there should not be a flat part at the end of curves in Figure 3
(b,c). We further conduct an in-depth analysis of observed co-run
slowdown trends to explain those observations, especially the flat
part at the end of those curves.

2.3 Validation: Fairness Control
Our study shows that the observed co-run performance trends
are the results of the prioritization of row-hit requests in memory
controllers (MC) and the fairness control employed in MC. MCs
typically prioritize row-hit requests in the MC queues to maximize



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

�D��)&)6 �E��)5�)&)6 �F��$7/$6 �G��7&0 �H��606
External bandwidth demands (GB/s)Ac

hi
ev

ed
 R

el
. S

pe
ed

 (%
)

Figure 5: The achieved relative speed (%) of synthetic programs running on high BW group under different memory pressure
on different scheduling policies.

total bandwidth [35]. But whenmore PUs simultaneously access the
memory, the high row-buffer hit rate can no longer be maintained.
Hence, even when the cumulative BW demand is less than what
the memory is capable of, a significant amount of memory access
slowdown is observed, hence reducing the speed.

The reason for flattened segments at the end of curves is
the fairness control [15, 33, 34] in MCs. As prior studies have
shown [8, 24, 25, 32–34], adopting fairness-aware scheduling poli-
cies in MCs is essential for multi-core processors and HSM-SoCs.
Without fairness control, the shared memory multi-core proces-
sors and HSM-SoCs will experience three major problems: 1) Low
system throughput; 2) Vulnerability to denial-of-service; 3) Unpre-
dictable slowdown and uncontrollable quality-of-services (QoS).
The main reason is that memory-intensive programs would hog
most BW in uncontrolled memory interference.

To validate that fairness control is the reason for observed perfor-
mance trends, we conduct a series of measurements. Because com-
mercial systems do not disclose detailed MC designs, we conduct
the study via a cycle-accurate x86 CMP DRAM simulator, Ramu-
lator [26], by using scheduling policies with and without fairness
controls. The front end of the simulator is based on Pin [28]. We
model the memory system in detail to faithfully capture bandwidth
limitation and contention, and enforce bank/channel/bus conflicts.
Table 1 shows the major DRAM and processor parameters.

We construct several synthetic vector add and multiplication
kernels built from the roofline toolkit [1] with different memory
BW demands. To simulate heterogeneous scenarios, we regard the
16 cores as two classes, with cores 0-7 as the low-bandwidth group
and cores 8-15 as the high-bandwidth group. In the low BW group,
we vary the requested standalone memory BW of the kernels from

Table 1: Config. of Memory Controller Simulation

Processor 16-core, 2.2 GHz, 128 entries reorder buffer;

Cache
Private L1D cache, 8-way, 64KB, 4 cycles;
Two-core shared L2 cache, 8-way, 1MB, 9 cycles;
Shared L3 cache, 16-way, 4MB, 26 cycles.

DRAM
Controller

256-entry request buffer,
XOR-based address-to-bank mapping

DRAM
Chip
Parameters

DDR4-3200 timing parameter [26],
8 banks, 4K-byte row buffer per bank,
Single rank, 4 channels, 64-bit wide channel,
102.4 GB/s theoretical bandwidth

6GB/s to 60GB/s with a 6GB/s increase, and from 9GB/s to 90GB/s
with a 9GB/s increase in the high BW group.

We evaluate five memory scheduling policies: first-come-first-
serve (FCFS), first-ready-FCFS (FR-FCFS) [35], Adaptive per-Thread
Least-Attained-Service (ATLAS) [24], Thread Cluster Memory
Scheduling (TCM) [25], and Stage Memory Scheduling (SMS) [8].
The last three policies adopt fairness control. The brief description
of these policies are shown in Table 2. The default parameters of
these policies are used.

The results of these five policies are shown in Fig. 5, where,
the y-axis is the percentage of the achieved standalone speed of
kernels. Table 3 reports the average row buffer hit rates (RBH) and
the effective BW percentage over the theoretical peak BWwhen the
sum of co-located programs’ standalone BW is equal to or larger
than the theoretical peak BW of these 5 policies.

In the FCFS results, as shown in Fig. 5 (a), the achieved speed
is reduced proportionally with external BW demands. Since MC
with FCFS deals with memory requests chronologically, each row
buffer deals with requests without locality awareness, leading to
low RBH and small effective BW (Table 3) in co-location scenarios.
FR-FCRS improves BW usage but does not adopt fairness controls.
In Fig. 5 (b), the programs suffer from large slow down when they

Table 2: Scheduling policies of memory controllers(MC)

Policy Description
FCFS MC schedules memory requests chronologically.
FR-FCFS [35] MC prioritizes row-hit requests.

ATLAS [24]
Prioritization order: 1) Over threshold request.
2) Requests from the thread that has attained least service.
3) Row-hit requests. 4) Oldest requests.

TCM [25]
Prioritization order: 1) Non-memory-intensive programs
2) Periodically rank shuffle memory-intensive programs
3) Row-hit requests. 4) Oldest requests.

SMS [8]
Steps:1) Group requests to the same row into batches
2) Schedule batches with p probability shortest first and
(1-p) probability round-robin

Table 3: Row buffer hits(RBH) and effective BW

Policies FCFS FR-FCFS ATLAS TCM SMS Xavier
RBH (%) 47.7 91.6 74.2 79.6 84.7 -
Effective BW
Percentage over
Peak BW (%)

65.6 89.7 78.4 80.8 84.3 79.1



PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0 10 20 30 40 50 60 70 80 90 100

100

90

80

70

60

50

40

30

20

10

0

A
ch

ie
ve

d 
R

el
at

iv
e 

S
pe

ed
 (%

)

External Memory Bandwidth Demands (GB/s)

Contention Balance Point 

Total Bandwidth Demand with Contention

Reduction Rate

1

Normal BW

MRMC
2

3

Intensive BW
5

4

Minor Contention Normal Contention Intensive Contention

Figure 6: The three-region interference classificationmodel.

are co-located with memory intensive programs, resulting in low
system throughput.

On the other hand, the results on all three scheduling policies
with fairness control exhibit trends similar to our observed trends
on Xavier (Fig. 3). ATLAS, for instance, tries to maintain fairness
according to attained services. In HSM-SoCs, the processor attained
the least services will be prioritized, leading to similar attained
services across processors. As shown in Fig. 5 (c), when a program
needs a small BW and it is co-located with a high BW demand
program, its achieved speed remains nearly unchanged, as its band-
width demand gets satisfied by the MC prioritization scheme. A
medium BW demanding program however sees some drops of its
achieved speed at the beginning as its demands exceed what the
prioritization scheme of the MC offers. When the external BW de-
mand grows, the slowdown becomes larger, as other co-located
programs send more requests in their own time slots. When the
external BW demand keeps growing, they eventually reach a stable
state under the MC scheduling policy, hence the flat segments in
the performance curves. For a high BW demanding program, it is
similar except that they get into the second phase from the begin-
ning. Similar effects are shown in the curves of TCM and SMS as
Figures 5 (d,e) show, although there are some detailed differences
due to the differences in the specifics of the schedulers; detailed
discussions are omitted for the sake of space.

3 MEMORY INTERFERENCE SLOWDOWN
MODEL

Based on the observations in Fig. 3, we propose a three-region mem-
ory interference slowdownmodel for a processor in an HSM-SoC. Our
approach is statistical via regression-based analysis. An alternative
is to construct the model analytically on the detailed memory con-
troller designs. This approach requires detailed knowledge on the
memory controller of each target device. As memory controllers
in commercial systems are usually undisclosed, the approach is
infeasible in general.

Table 4: Notations and Model Parameters

Term Description
Normal BW The level of BW demand by the current PU that sepa-

rates the minor and normal contention regions.
Intensive BW The level of BW demand by the current PU that sepa-

rates the normal and intensive contention regions.
Max. Reduction of
Minor Contention
(MRMC)

The maximum slowdown in the minor contention re-
gion at the largest external memory pressure

Contention Balance
Point (CBP)

The value of the external memory demand where the
speed curve of the current PU starts going flat.

Total Bandwidth De-
mand with Contention
(TBWDC)

The sum of the BW demand by a PU and the total ex-
ternal BW demand where the speed curve of the cur-
rent PU enters the dropping phase in the normal con-
tention region

𝑟𝑎𝑡𝑒𝑁 The reduction rate of the achieved speed in the normal
contention region

𝑟𝑎𝑡𝑒𝐼 The reduction rate of the achieved speed in the inten-
sive contention region

Peak Bandwidth (PBW) The peak bandwidth of the entire HSM-SoC
Achieved Relative
Speed (RS)

The percentage of the standalone execution speed that
has been achieved

In the three-region model, we create a linear function for each of
the three regions demonstrated in Fig. 3 (a), (b), and (c), and present
them in the unified chart given in Fig. 6:

(1) Minor Contention Region is the top-most region in the figure
where the workload on the current PU requests memory
bandwidth that is low enough so that the effects of the ex-
ternal memory bandwidth demand are minimal.

(2) Normal Contention Region is where the current PU’s re-
quested memory bandwidth is at a middle level such that the
interference performance curve follows the pattern in Fig. 3
(b). The pattern has two points determining the beginning
and end of its linear region, and they are marked as Total
Bandwidth Demand with Contention point and Contention
Balance Point, respectively.

(3) Intensive Contention Region is the bottom-most region in the
figure where the current PU’s requested bandwidth is so
high that the achieved speed is significantly affected by the
external bandwidth demand.

An important feature of this classification is that it is processor-
centric since it characterizes each PU in the system separately rather
than creating peer-to-peer contention analysis as many CPU+GPU
based studies do. The different PUs on the same HSM-SoC would
have different values for contention region boundary, contention
balance point and the reduction rate. For example, the GPU has a
large number of threads and its standalone performance can hide
the memory latency, hence using more bandwidth of the entire
HSM-SoC. However, when the GPU is under contention from ex-
ternal traffic caused by another processor in the HSM-SoC, the
point of total bandwidth demand with contention would be larger.
On the other hand, the reduction rate in both normal and intensive
contention regions is larger. The achieved relative speed after the
contention balance point is also smaller for GPUs. We next explain
the exact formulations of the slowdown curves as well as how the
model parameters can be determined for a PU.

3.1 Model Formulation
Table 7 summarizes the parameters and concepts used in our model.
We begin building our model by defining region partitions as shown



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

in Equation 1. The 𝑥 represents the bandwidth requested by the ker-
nel running on the current PU. The top six values are PU-specific
values that can be obtained using the method explained in Sec-
tion 3.2.

𝑅𝑒𝑔𝑖𝑜𝑛 =


𝑀𝑖𝑛𝑜𝑟 0 ≤ 𝑥 ≤ 𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑊

𝑁𝑜𝑟𝑚𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑊 ≤ 𝑥 ≤ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝐵𝑊

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝐵𝑊 ≤ 𝑥

(1)

To model the contention in the minor contention region, we use
the𝑀𝑅𝑀𝐶 , the constant rate of reduction observed for this region.
The achieved relative speed in the minor contention region, 𝑅𝑆𝑀 ,
is as follows:

𝑅𝑆𝑀 = 100% − 𝑀𝑅𝑀𝐶 ∗ 𝑥
𝑃𝐵𝑊

(2)

For the normal contention region, the achieved relative speed,
𝑅𝑆𝑁 , is a piece-wise function, as shown in Equation 3, where 𝑦
represents the total external memory demand.

• The first piece of Equation 3 represents the case when the
summation of the PU BW demand and external demanded
(𝑥 +𝑦) is smaller than the processor-specific value of TBWDC
and 𝑦 is smaller than 𝐶𝐵𝑃 . In this case, the achieved relative
speed of the current PU is the same as the minor contention
part.

• When 𝑥 +𝑦 is larger than TBWDC and 𝑦 is smaller than𝐶𝐵𝑃 ,
the achieved relative speed of the current PU is reduced by
a constant 𝑟𝑎𝑡𝑒𝑁 multiplied by 𝑥 + 𝑦 − TBWDC.

• When𝑦 is larger than𝐶𝐵𝑃 , the reduction of achieved relative
speed of the current PU remains constant, which is defined
as 100% − (𝑥 +𝐶𝐵𝑃 − TBWDC) ∗ 𝑟𝑎𝑡𝑒𝑁 .

𝑅𝑆𝑁 =


100% − 𝑀𝑅𝑀𝐶∗𝑥

𝑃𝐵𝑊
0 ≤ 𝑥 + 𝑦 ≤ TBWDC
𝑎𝑛𝑑 𝑦 ≤ 𝐶𝐵𝑃

100% − (𝑥 + 𝑦 −𝑇𝐵𝑊𝐷𝐶) ∗ 𝑟𝑎𝑡𝑒𝑁 TBWDC ≤ 𝑥 + 𝑦

𝑎𝑛𝑑 𝑦 ≤ 𝐶𝐵𝑃

100% − (𝑥 +𝐶𝐵𝑃 − TBWDC) ∗ 𝑟𝑎𝑡𝑒𝑁 𝐶𝐵𝑃 ≤ 𝑦 ≤ 𝑃𝐵𝑊

(3)

For the intensive contention region, since the requested BW
already exceeds the TBWDC, the achieved relative speed starts
reductionwithminimal external pressure demand and the reduction
rate 𝑅𝐼 is larger. We obtain the rate 𝑟𝑎𝑡𝑒𝐼 , shown in Equation 4, by
extending the performance reduction curve (dotted lines in Fig. 6)
by multiplying with rate 𝑟𝑎𝑡𝑒𝑁 in the normal region and then by
dividing it by 𝐶𝐵𝑃 .

𝑟𝑎𝑡𝑒𝐼 =
𝑟𝑎𝑡𝑒𝑁 ∗ (𝑥 +𝐶𝐵𝑃 − TBWDC)

𝐶𝐵𝑃
(4)

The achieved relative speed of an intensive region, 𝑅𝑆𝐼 , has a
reduction stage and a flat stage. The piecewise equation is shown
in Equation 5. The two pieces of this equation are identical to the
second and third pieces of Equation 3 except that 𝑟𝑎𝑡𝑒𝑁 is replaced
with 𝑟𝑎𝑡𝑒𝐼 .

𝑅𝑆𝐼 =

{
100% − (𝑥𝑖 + 𝑦 − TBWDC) ∗ 𝑟𝑎𝑡𝑒𝐼 TBWDC ≤ 𝑦 ≤ 𝐶𝐵𝑃

100% − (𝑥𝑖 +𝐶𝐵𝑃 − TBWDC) ∗ 𝑟𝑎𝑡𝑒𝐼 𝐶𝐵𝑃 ≤ 𝑦 ≤ 𝑃𝐵𝑊
(5)

3.2 Model Construction
The slowdown model relies on several PU- and SoC-specific param-
eters that need to be determined via either standalone or collocated
runs. To achieve varying amounts of memory BW requests, we

create synthetic kernels with different compute/memory (i.e., oper-
ational) intensities, similar to those used in the Roofline model [40].
The page https://github.com/processorcentricmodel/PCCS shows
the code and pseudo code. The basic idea is to have the PU load
each word in an array of a certain size and perform some operations.
The BW of this kernel is the total memory access size (i.e., twice
the array size) divided by execution time. We modify the number of
operations per word to control the operation intensities to generate
different BW kernels. They serve as calibrators of our models. For
each variation of operational intensity, we record and report the
resulting standalone BW demand on the architecture it runs on.

The construction process of our model uses the calibrators (syn-
thetic traffic generators) based on the source-oblivious assumption,
that is, the amount rather than the source of external traffic matters.
It makes the construction processor-centric, avoiding runningmany
combinations of co-running scenarios. We validate the assumption
on NVIDIA Jetson AGX Xavier [3] by creating the external traffic
with different sources but with the same total amount. The achieved
relative speed was very close.

The model construction for a target PU includes two main steps.
The first step is to run each of the BW kernels on the target PU
under various external BW demands. The external BW demand is
generated by running the BW kernels on other PUs. We record the
achieved relative speeds of the kernels on the target PU under the
various external BW demands into a two-dimensional matrix. The
element 𝑟𝑒𝑙𝑎[𝑖] [ 𝑗] in that matrix is the achieved relative speed of
the i-th smallest kernel running on the target PU under the j-th
smallest external BW demands.

The second step is to analyze that matrix to determine model
parameters in Fig. 6. The algorithm takes this matrix (rela[n][m]),
standalone BW (stdBW[n] and external BW (extBW[m]) as the
input. The analysis includes 5 steps to determine model parameters.

[1] To find the 𝑛𝑜𝑟𝑚𝑎𝑙𝐵𝑊 and𝑀𝑅𝑀𝐶 , 1 in Fig. 6, the algorithm
examines the last column of array rela[:][m-1]. The first value
from the top (row 0) that is two times larger than rela[0][m-1]
defines the boundary, 𝑘𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , for the normal region, and
the BW demand corresponding to this row is the normal BW.
The element on the previous row and last column defines the
𝑀𝑅𝑀𝐶 value.

[2] For the boundary program row, the algorithm examines the
value from left to right. The first columnwith notable reduction
(2*𝑀𝑅𝑀𝐶) defines the total bandwidth demandwith contention
by summing the total BW demand, TBWDC, as shown with 2
in Fig. 6.

[3] The algorithm examines the first column from the top (row
0). The first element that has a notable (2*𝑀𝑅𝑀𝐶) reduction
defines the intensive bandwidth boundary 3 in Fig. 6.

[4] Among the normal region rows, we calculate the relative speed
changes in each row from left to right to find the turning points
(columns) that start the flat region. The average external BW
of these points defines the contention balance point 4 in Fig. 6.

[5] The average achieved performance reduction rate within the
normal region and the contention balance point is the reduction
rate of the normal contention region 5 .

After these steps, the PCCS model of a PU is constructed for this
HSM-SoC.

https://github.com/processorcentricmodel/PCCS


PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Handling multi-phase programs: To apply PCCS to mult-phase
programs, we can divide the program into different phases and
apply the prediction on each phase to obtain slowdown under
contention. The total slowdown is obtained by aggregating each
phase according to the execution time percentage in standalone
running. We use cfd as a multi-phase example in Section 4.1 to
demonstrate PCCS’s applicability.

3.3 Model Scaling with Memory Bandwidth
In architecture design, memory and PUs are usually designed to-
gether. Fortunately, memory changes across the generations of
SoCs are often incremental, consisting mostly frequency changes;
the main memory technology changes (e.g., from DDR4 to DDR5)
are less common [2]. For example, between 2013 and 2020, the
same single-channel 32-bit low-power DDR3 (LPDDR3) memory
architecture was deployed in over 20 different SoCs designed by
Qualcomm. The only major memory-related change across these
designs is the I/O bus clock frequency which varies between 533
and 933 MHZ [5].

While the PCCS model construction process outlined in Sec-
tion 3.2 requires runs on a physical system, our slowdown model
can well adapt to incremental clock frequency changes in the shared
memory subsystem via linear bandwidth scaling. To demonstrate
the feasibility of such an approach, (1) we first construct the orig-
inal PCSS model on Xavier AGX when the memory clock is set
to the highest possible value of 2133HMz and find the five key
bandwidth-related parameters using the methodology prescribed
in Section 4.1. (2) We then linearly scale down these five PCCS pa-
rameters to reflect the proportional frequency and channel-count
changes if the memory clock were set to be 1066MHz, 1333MMz,
and 1600MHz. (3) Finally, we under-clock the Xavier memory clock
frequency to these three values and re-obtain the five PCCS param-
eters by following the empirical model construction process for
each frequency.

Table 5 shows the difference between the scaled-down and the
constructed values (i.e., the values which are empirically obtained
by underclocking the target SoC) of the five parameters that deter-
mine a PCCS model. The results show that the average error due to
the linear scaling of these parameters is lower than 3%. In summary,
in the case where there is a major memory technology change, one
would need to update the model through profiling on devices with
the new technology; after that, the model can be used via simple
scaling for the upcoming generations of the SoC just as described
earlier in this section.

Table 5: Linear Parameter Scaling in PCCS

Parameters Scaling method Avg. error of scaled
PCCS over cons-
tructed PCCS (%)

Normal BW (GB/s) Linearly scaled parameters
w.r.t to the ratio between
the original and the target
mem. freq. and # of channels.

1.5%
Intensive BW (GB/s) 2.1%
MRMC (%) 2.2%
CBP (GB/s) 1.7%
TBWC (GB/s) 2.2%
𝑅𝑎𝑡𝑒𝑁 (% per (GB/s)) Calculated based on the scaled

values of the parameters above
1.8%

𝑅𝑎𝑡𝑒𝐼 (% per (GB/s)) 2.5%

3.4 Uses in SoC Designs
The objective of hardware design space exploration is to predict how
potential workloads would perform and minimize the hardware
cost accordingly. This step typically needs many rounds to fine
tune. PCCS helps this exploration process by providing how much
slowdown the tasks will experience when running in a collocated
manner. The accuracy of the slowdown predicted by PCCS is only
as good as the accuracy of the standalone performance predictions
or profilings fed into the PCCS model.

PU2PU1

Standalone 
Performance 

K1 K2

Task Placement 
Scheme

PU Variations
(Cores, frequency, features)

PCCS

BW 
demands Colocated

Slowdown

Memory Variations
(frequency, # of 

channels, bit width)
Linear Scaling

Figure 7: PCCS workflow.

The workflow of using PCCS is shown in Figure 7. A task place-
ment scheme for an application indicates a mapping of kernels 𝐾1
and𝐾2 to 𝑃𝑈 s in a system. For a given placement, we can obtain the
standalone memory BW requirements of 𝐾1, 𝐾2, profiling results,
and bandwidth model of each PU. We use the total external demand
BW and the demand BW of the PUs as inputs for PCCS to obtain
collocated execution slowdown so that designers can explore the
effects of architectural features on the contention-based slowdown.

PCCS can help in the exploration of two critical sets of design
parameters:

PU-related architectural changes: The effects of the number of
cores in a PU (e.g., SMs or CPU cores), the PU clock frequency, and
hardware features, such as SIMD, on contention-caused slowdown
can be explored via PCCS. The architects can either utilize an ex-
isting architecture by reconfiguring it in software to obtain new
standalone profiling results or analytically scale existing standalone
performance predictions for BW. Then, the new standalone BW de-
mand values can be fed into PCCS to obtain a slowdown prediction
that can be used to decide whether this PU variation will meet the
requirements. This process is explored in detail in Section 4.3.

Memory sub-system parameters: When designing new SoCs, de-
pending on the target domain, architects often adjust memory sub-
system parameters such as I/O clock frequency, number of channels,
and bit-width. Then, the designer can either modify, if possible, the
software configurable memory parameters of the existing architec-
ture to obtain new standalone profiling results or they can scale
their standalone performance models to reflect memory-related
design changes. The PCCS model construction process does not
require the collection of collocated execution related parameters for
the new memory subsystem being considered. Instead, as detailed
in Section 3.3, PCCS model parameters can be linearly scaled to
match the resulting theoretical BW change ratio implied by the
considered memory-related design changes. Then, the scaled BW
parameters can be used to obtain a slowdown prediction that can
be used to decide whether this memory variation is feasible.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

Table 6: Two Experiment Platforms

NVIDIA Jetson AGX Xavier
CPU 8-core Carmel 64-bit ARMv8.2 @ 2265MHz
GPU 512-core NVIDIA Volta@1377MHz with 64 Tensor Cores
DLA NVIDIA DLA @1395.2 MHz, 512KB Convolutional buffer
Memory 16GB 256-bit LPDDR4x @ 2133MHz | 137GB/s
Qualcomm Snapdragon 855
CPU 8-core Kryo 485 64-bit ARMv8.2 @1.8GHz
GPU Qualcomm® Adreno™ 640 GPU
Memory 16GB 64-bit LPDDR4x @ 2133MHz | 34GB/s

4 EVALUATION
4.1 Empirical Validation of The Slow-down

Model
Our slowdown model explained in Section 3 is built via synthetic
benchmarks. In this section, we validate the prediction accuracy of
our model using several widely used benchmark kernels and neural
networks.

4.1.1 Setup and Methodology. Target architectures: We use two
models of real heterogeneous SoC for experiments. One is NVIDIA
Jetson Xavier autonomous system [3] which consists of CPU, GPU
and DLA. The other is Qualcomm Snapdragon 855 [4] mobile plat-
form consisting of CPU and GPU. Table 6 shows the architecture
details.

Model construction: We follow the methodology detailed in Sec-
tion 3.2 to build the models. For CPU and GPU, we employ vector-
add kernels with different operational intensities; for DLA, we use
MNIST neural network and control its operational intensities by
varying convolution filter sizes.

Application selection: We evaluate our CPU and GPU slowdown
model on Rodinia benchmarks [11], and our DLA model on Im-
ageNet [13] with ResNet-50 and VGG19 models. We select 10
Rodinia benchmarks: three of them, hotspot (HS), leukocyte
(LC) and heartwall (HW), are compute intensive and 7 of
them, streamcluster (SC), pathfinder (PF), srad, k-means (KM),
b+tree (BT), CFD and BFS, are memory intensive.

Bandwidth characterization: To find requested memory band-
widths of applications and kernels, we need only the standalone
BW rates which can be obtained through NVperf, perf or Valgrind.

External memory pressure: To create contention, we run synthetic
kernels on other PUs. For the CPU model, we create the external
pressure using the GPU; for the GPU and DLA models, we create
the external pressure using the CPU. For every benchmark, we
vary the external pressure by changing the BW request of the other
processor from 10% to 100% of the peak DRAM BW on this PU with
a 10% peak BW as the stride.

Baseline: Gables [19] is the closest and most recent work that
proposes a sharing-aware analytical model for different types of PUs
that run on HSM-SoCs. The memory contention model proposed by
Gables assumes that the effective bandwidth of a processor under
contention is not reduced as long as the total BW requested is
smaller than the SoC peak BW. Otherwise, the effective BW is
calculated by pro-rating the requested BW to the available BW.

4.1.2 Validation Results. Fig. 8 shows actual slowdown of 10 Ro-
dinia benchmarks running on the Xavier GPU as well as the pre-
dicted slowdowns by PCCS and Gables, under varying amounts of
external memory contention. The average error of our model for
GPU is 6.3%. For the benchmarks with small requested BWs, their
achieved speed is close to the standalone one under memory con-
tention. For other benchmarks that need medium BW in standalone
runs, the slowdown for lower external memory pressure is mini-
mal. However, as the pressure increases to exceed a certain level,
their achieved relative speed drops significantly with the external
pressure, and eventually the slowdown flattens, as predicted by
our three-region contention categorization. Our model consistently
and accurately classifies and predicts these trends. The highest pre-
diction error occurs with the BFS kernel, which has a poor locality
that is affecting the row buffer hit rates significantly.

Fig. 9 compares the predicted (PCCS and Gables) and the actual
achieved relative speeds of 5 Rodinia benchmarks that are run on
the Xavier CPU under external memory contention. Overall, the
average error of our model for CPU runs is 2.6%. Since hotspot
is computation intensive, it belongs to the minor contention re-
gion. The other four benchmarks belong to the normal contention
region. The accuracy slightly decreases during the flat regions
of streamcluster, pathfinder and k-means, however the upper
bounds for those regions still hold and overall has significantly less
errors when compared to Gables.

Fig. 10 compares the predicted (PCCS and Gables) and the ac-
tual achieved relative speed of 10 Rodinia benchmarks running
on the Snapdragon 855 GPU, under varying amounts of external
memory contention. In this experiment, the average error of our
model for GPU is 5.9%. The results on the Snapdragon CPU are
more accurate, as shown in Figure 11 with only a 3.1% average
error in the predicted slowdown. As Snapdragon architecture uses
different memory controllers and different PU designs from Xavier,
programs show different standalone bandwidth demands. Hotspot
for instance, runs with a lower requested throughput on Kyro cores
of the Snapdragon due to reduced frequencies in the core and mem-
ory. Our model hence moves it into the minor contention category.
Despite the differences between the two architectures, our PCCS
model gives accurate predictions of co-run slowdown on both of
them.

The achieved relative speeds for DLA runs on Xavier are shown
in Fig. 12. The average error of PCCS slowdown prediction for this
PU is 5.3%. Since the DLA is a specialized processor for inference,
we observe that the DLA can only achieve 20-30GB/s bandwidth
in most standalone runs. Therefore, the DLA’s slowdown under
external pressure only falls under the normal contention region,
while the kernels running on DLA are still sensitive to external
memory pressure. As shown in Fig. 12, the achieved relative speed
keeps reducing until ~70 GBpS of external pressure and there is only
a small flat region at the higher end of external pressure demand.

In comparison, the average prediction errors of the Gables model
on the GPU, CPU and DLA on Xavier are 39%, 10.3% and 26.7%, and
on the CPU and GPU on Snapdragon are 8.1% and 37.6% respectively.
The reasons for the low accuracy are (i) it assumes the peak band-
width is always achievable, and ignores the effects of contention;
(ii) it assumes that the effective bandwidth can be proportionally
divided down when the requested BW exceeds the DRAM capacity.



PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

20 40 60 80
40

60

80

100
streamcluster

actual PCCS Gables

20 40 60 80
40

60

80

100
pathfinder

20 40 60 80
40

60

80

100
srad

20 40 60 80
40

60

80

100
k-means

20 40 60 80
40

60

80

100
b+tree

20 40 60 80
40

60

80

100
cfd

20 40 60 80
40

60

80

100
bfs

20 40 60 80
40

60

80

100
hotspot

20 40 60 80
40

60

80

100
leukocyte

20 40 60 80
40

60

80

100
heartwall

External Memory Bandwidth Demands (GB/s)

Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 8: The predicted and actual slowdowns of 10 Rodinia benchmarks on Xavier GPU

25 50 75 100 125
60

70

80

90

100
streamcluster

actual PCCS Gables

25 50 75 100 125
60

70

80

90

100
pathfinder

25 50 75 100 125
60

70

80

90

100
k-means

25 50 75 100 125
60

70

80

90

100
srad

25 50 75 100 125
60

70

80

90

100
hotspot

External Memory Bandwidth Demands (GB/s)Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 9: The predicted and actual slowdowns of 5 Rodinia benchmarks on Xavier CPU

5 10 15 20 25

60

80

100
streamcluster

actual PCCS Gables

5 10 15 20 25

60

80

100
pathfinder

5 10 15 20 25

60

80

100
srad

5 10 15 20 25

60

80

100
k-means

5 10 15 20 25

60

80

100
b+tree

5 10 15 20 25

60

80

100
cfd

5 10 15 20 25

60

80

100
bfs

5 10 15 20 25

60

80

100
hotspot

5 10 15 20 25

60

80

100
leukocyte

5 10 15 20 25

60

80

100
heartwall

External Memory Bandwidth Demands (GB/s)

Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 10: The predicted and actual slowdowns of 10 Rodinia benchmarks on Snapdragon 855 GPU

Table 7: Model Parameters

Parameters Xavier Snapdragon
CPU GPU DLA CPU GPU

Normal BW (GB/s) 37.6 38.1 0 6.8 9.1
Intensive BW (GB/s) 65.7 96.2 27.9 19.1 24.1
MRMC (%) 3.7 4.9 NA 5.7 9.8
CBP (GB/s) 46.6 45.3 71.1 16.1 12.8
TBWC (GB/s) 82.8 87.2 22.1 14.1 13.4
𝑅𝑎𝑡𝑒𝐼 (% per (GB/s)) 0.57 1.11 0.35 1.22 2.27

Model parameters: The model parameters are shown in Table 7.
Different types of PUs on the same SoC differ in their model param-
eters. GPUs are more sensitive to external memory demand and
they have a higher reduction rate than CPUs have. DLA is a special
case in that it doesn’t contain a minor contention region; as a result,
even small external memory demands would trigger slowdowns of
DLA. It is likely due to the lack of thread-level parallelism in DLA
to hide memory latency.

Programs with phase shifts: We also test the prediction accuracy
of our model with applications that involve shifts of phases and



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

5 10 15 20 25 30
60

70

80

90

100

streamcluster

actual PCCS Gables

5 10 15 20 25 30
60

70

80

90

100

pathfinder

5 10 15 20 25 30
60

70

80

90

100

k-means

5 10 15 20 25 30
60

70

80

90

100

srad

5 10 15 20 25 30
60

70

80

90

100

hotspot

External Memory Bandwidth Demands (GB/s)Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 11: The predicted and actual slowdowns of 5 Rodinia benchmarks on Snapdragon 855 CPU

20 40 60 80

70

80

90

100
Resnet-50

actual PCCS Gables

20 40 60 80

80

90

100
VGG-19

External Memory Bandwidth Demands (GB/s)Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 12: The predicted and actual slowdowns of VGG19
and Resnet50 on the DLA

18 36 54 71 90
30
40
50
60
70
80
90

100

Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
) Actual PCCS

18 36 54 71 90
External Memory Bandwidth Demands (GB/s)

30
40
50
60
70
80
90

100

Actual
K1 PCCS

K2-4 PCCS
Overall PCCS

Figure 13: The predicted slowdowns of CFD with (a) average
BW and (b) piece-wise BW

exhibit obvious changes in memory bandwidth demands. CFD is
such a program, which embeds 4 different kernels where one of
them (K1) is a high BWkernel and the other three (K2-4) aremedium
BW kernels. When we use the average BW of the 4 kernels to
characterize the interference behavior of CFD, as shown in the
results given Fig. 13 (a), our model’s prediction has an error rate
of 19.4%. It is because high BW demanding kernels suffer a larger
slowdown, but using the average BW as the input causes our model
to underestimate the slowdown. When we use the BW demand of
each kernel as the input to our model and combine the predictions
of different kernels by using the execution time percentage of each
kernel as the weight, as shown in Fig. 13 (b), the prediction error
drops to 4.6%. It indicates the usefulness of our model on code with
phase shifts; phase detection [20, 36, 37] is a well-studied topic and
is orthogonal to this work.

4.2 Results of Co-locations of Real Programs
To further demonstrate the accuracy of PCCS on real scenarios,
we conduct the following experiments. We construct 3-PU co-run
workloads. For each workload, every PU runs a benchmark from
the Rodinia benchmark suite or an ML model. Table 8 lists 11 of the
representative workloads that we show results. We measure and
predict the achieved relative speed of the workloads (co-run speed
over the standalone speed) until one of PUs finishes its program.

The results of the 11workloads on CPU, GPU andDLA are shown
in Fig. 14, where each bar shows either the actual or the predicted
achieved relative speed, and the numbers on the prediction bars
are the prediction errors. The average errors of PCCS on CPU,
GPU and DLA are 3.7%, 8.7% and 5.6%, while the errors of Gables
are 13.4%, 30.3%, 20.6% respectively. Different PUs show different
actual achieved relative speed results. The programs with small BW
running on CPU and GPU suffer from small memory contention
even though the external BW demand is large. Meanwhile, the
programs on the CPU have a smaller speed reduction than the
programs on the GPU. DLA is more sensitive to external BW on
different machine learning models. PCCS is able to capture PU-
specific features. The errors on bfs, k-means and b+tree benchmarks
are a bit larger than on other programs as those benchmarks create
more BW pressure (e.g., row buffer hit rate).

4.3 Demonstrations of the Use in SoC Designs
This section demonstrates the use of PCCS in helping with the pre-
silicon SoC design process. By comparing the PU configurations
yielded from the use of PCCS and Gables models, we demonstrate
how more accurate models could lead to more effective hardware
designs.

Setting: The assumed setting is as follows. The architects would
like to design an SoC similar to Xavier. Among the many optional
designs, one design includes an 8-core ARMv8.2 CPUs, one GPU of
a certain model, and one DLA of a certain model on the SoC. This is
pre-silicon time, so the SoC is not available yet. The specific design
task in this case study is to determine the appropriate frequencies
to clock the GPU. The architects have a crucial workload used in
guiding their hardware designs, and the kernel in the workload
that is supposed to run on the GPU is a clustering kernel, the
streamcluster.

Objectives: The architects would like to find out the appropri-
ate frequencies to clock the GPU. They consider two cases, the
clustering kernel suffers a corun slowdown of no more than 5% or
no more than 20%.



PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 8: Workloads Settings

Workload A B C D E F G H I J K
CPU streamcluster streamcluster streamcluster streamcluster pathfinder pathfinder k-means k-means hotspot srad srad
GPU pathfinder pathfinder leukocyte srad streamcluster heartwall b+tree srad bfs pathfinder leukocyte
DLA Resnet-50 VGG-19 Alexnet Resnet-50 VGG-19 Alexnet Resnet-50 VGG-19 Alexnet Resnet-50 VGG-19

Workloads
(a) The predicted and actual relative speed on the CPU

Workloads
(b) The predicted and actual relative speed on the GPU

(c) The predicted and actual relative speed on the DLA
Workloads

Figure 14: The predicted and actual achieved relative speed of 11 workloads on CPU (a), GPU (b) and DLA (c)

Table 9: PU frequencies selected by PCCS and Gables

External BW demand (GB/s) 20 40 60 20 40 60 20 40 60 20 40 60 Avg. 20 40 60 Avg.
Selected PU frequencies (MHz) on different external BW demands Erros (%)
Ground truth PCCS Gables PCCS Gables

Maximum allowed
Slowdown

5% 840 650 620 860 670 630 880 880 880 2.4 3.1 1.6 2.4 4.8 35.4 41.9 27.4
20% 790 600 550 800 610 570 820 820 820 1.3 1.7 3.6 2.2 3.8 36.7 49.1 29.9

20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Actual 1377MHz
Actual 900MHz

PCCS on 900MHz
Gable's on 900MHz

20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Actual on 1377MHz
Actual on 670MHz

PCCS on 670MHz
Gables on 670MHz

External Memory Bandwidth Demands (GB/s)

Ac
hi

ev
ed

 R
el

at
iv

e 
Sp

ee
d 

(%
)

Figure 15: PU frequency exploration and validation for GPU
using streamcluster.

Given: (i) the standalone performance models of each kernel in
the workload, from which one can get the standalone performance

and memory bandwidth demand of each kernel on any of the pro-
cessors at a given frequency; (ii) the PCCS slowdown model of each
of the processors; (iii) the Gables’ performance model.

Method: The ways to use the two models are similar. The ar-
chitects can use either of the two models, along with other given
conditions, to get the co-run slowdown curves of the clustering
kernel under each GPU frequency. From the curves, they can easily
tell how much slowdown the kernel would suffer at a given GPU
frequency and external memory BW contention. They can then
pick the frequencies that meet the requirements in the two cases.

Validations: To quantitatively examine the quality of the out-
comes from the use of each of the two models, we check how well
the method works on the real NVIDIA Jetson AGX Xavier. We build
both the PCCS and the Gables on this processor. For the validation
purpose, we get the true standalone performance of the clustering
kernel through profiling, and collect the true co-run slowdown
curves of the clustering kernel at each frequency. Table 9 reports
the frequencies picked by using the two models and the ground



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

truth at either the 5% or 20% allowed co-run slowdown case. In
each case, it shows the results at one of three external memory BW
contention levels, 20GB/s, 40GB/s, and 60GB/s.

The frequencies picked with PCCS are 1.3-3.6% off, while Gables
3.8-49.1% off. The large differences are the result of the different
accuracies of the two models in predicting co-run slowdowns. Fig-
ure 15 shows the co-run relative speed curves predicted by the two
models and the ground truth, at each of several frequencies. From
the graphs, we can see that for streamcluster, its true co-run per-
formance curve at the top frequency, 1377MHz, is almost identical
to the curve at frequency 900MHz. It is because the standalone
performance of streamcluster shows no drop until the frequency
goes below 900MHz; there is hence no change in its memory band-
width demands. Even though such information is given to both
PCCS and Gables models, they get very different conclusions. PCCS
accurately predicts the co-run curve, while Gable’s model fails to
do so. It mistakenly predicts that there is no memory contention
at 900MHz when there is 20GB/s or 40GB/s external BW demand
because the total BW of the SoC is sufficient to accommodate all
demands, and hence gives the curve significantly different from the
ground truth. The curves at frequencies 670MHz shown in the other
graph in Figure 15 show the predictions of the two models when
the reduction of frequency causes reductions of the standalone
performance. Gable’s result again shows a much larger discrepancy
from the true curve than PCCS does.

This use case demonstrates that the more accurate slowdown
model of PCCS can indeed lead to meaningful benefits in hardware
design choices. Similarly, it can help decide the appropriate number
of cores, types of PUs, or other hardware settings to use for an SoC.

5 DISCUSSIONS
We briefly discuss two complexities.

Synchronization: Our assumptions do not rule out inter-PU syn-
chronizations as long as they occur after the end or before the
beginning of a kernel. Synchronizations with external devices in
the middle of the kernel is not common, consideration of which is
left for the future.

Address mapping and multi-MC:. Recent HSM-SoCs (Xaiver se-
ries, Tegra X1, Tegra X2, and Snapdragon 855 series) usually use
channel interleaving mapping and one MC to construct a wider bus
width (256-bit), such that applications can use peak BW without
considering address mapping. For the case where SoC uses multi-
MC and maps different channels to each MC, our model can be
extended to support that by considering specific address mappings
and coordinations between MCs.

Power budget: Our current model does not explicitly model
power or thermal throttling. The experiments on the two real-
world SoCs already show much better accuracy than the state of
the art; a deeper integration of those other factors could potentially
further improve the accuracy. In SoC design, our current model
could potentially work with power budgeting by predicting the
co-run performance under each given power budget.

6 RELATEDWORK
There is a rich set of studies on performance modeling with memory
interference awareness. Table 10 lists some studies on memory
interference modeling.

Table 10: Related Work Comparison

Related Work Memory
Interference Model Accuracy Arch. Design

Exploration
Bubble-up [29] Empirical High ×
GDP [22] Dynamic High ×
Co-run [47] Lookup Table High ×
ESP [31] Linear Regression Medium ×
Gables [19] Analytical Low ✓
PCCS Empirical & Analytical High ✓

Bubble-up [29] proposes to empirically measure the memory
interference sensitive curve over different other processor memory
pressures for each application. Each application has its own sen-
sitive curve which has a high accuracy in predicting the memory
interference over memory pressure. Graph-based Dynamic Perfor-
mance (GDP) [22] estimates the number of load-related stall cycles
by multiplying critical path length with the estimated average pri-
vate mode memory latency, whereby estimates interference-caused
slowdown. Another work on co-run scheduling [47] proposes a
memory interference performance lookup table to predict co-run
performance. This lookup table is measured by profiling different
co-run combinations. Another study [31] uses different co-run com-
binations to train a linear regression model. During the prediction,
they use this linear regression model to match maximum likelihood
co-run application characteristics. Through a black-box method,
their accuracy is lower than the previous three studies. The above
four studies provide an accurate memory interference performance
for runtime usage purposes, but are for post-silicon runtime uses
rather than SoC designs.

A variety of slowdown models have been proposed to improve
hardware utilization or QoS. In CPUs, Du Bois et al [14] proposed
hardware-efficient per-thread cycle accounting architecture for mul-
ticore processors to detect inter-thread cache/memory interference
and predict slowdown percentage. Application Slowdown Model
(ASM) [38] proposed to use a runtime monitor to periodically give
the highest priority to one processor’s memory requests to estimate
standalone performance. In GPUs, Hybrid Slowdown Model [45]
proposed to use a hybrid of white-box [21] and black-box [43, 44]
methods to predict slowdown for multitasking GPUs.

7 CONCLUSION
Heterogeneous SoC design has been facing the dilemma of accuracy
and coverage. Accurate simulations are time-consuming, difficult
to cover a large design space; rough estimations by experience or
analytical models face high risks of inaccuracy. The new approach
proposed in this work strives to bridge the gap. We propose a novel
processor-centric performance modeling methodology, and a new
three region interference-conscious performance model. The modeling
process needs no measurements of co-runs of various combinations
of applications. The new method reduces average prediction errors
of the state-of-art model from 24.8% to 8.7% on GPU, and from 13.0%



PCCS: Processor-Centric Contention-aware Slowdown Model for Heterogeneous System-on-Chips MICRO ’21, October 18–22, 2021, Virtual Event, Greece

to 3.3% on CPU, and has demonstrated much-improved efficacy in
guiding SoC designs in several use-case studies.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers whose feedback is helpful
for improving the final version of the paper. We also thank Seyong
Lee, Narasinga Rao Miniskar and Mohammad Alaul Haque Monil,
Steve A Moulton for their feedback and support. This material
is based upon work supported by the National Science Founda-
tion (NSF) under Grant No. CCF-2124010 and CNS-1717425, the
US Department of Energy (DOE) Office of Science under contract
no. DE-AC05-00OR22725, the Defense Advanced Research Projects
Agency Microsystems Technology Office Domain-Specific System-
on-Chip Program and DOE Office of Science, Office of Advanced
Scientific Computing Research. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF or DOE.

REFERENCES
[1] [n. d.]. CS Roofline Toolkit. https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

src/master/. Accessed July, 2020.
[2] [n. d.]. DDR5 vs DDR4 All the Design Challenges and Advantages. https:

//www.rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets. Accessed Feb,
2021.

[3] [n. d.]. NVIDIA TENSOR CORES. https://devblogs.nvidia.com/nvidia-jetson-
agx-xavier-32-teraops-ai-robotics/. Accessed Nov, 2020.

[4] [n. d.]. Qualcomm Snapdragon 855 Mobile Platform. https://www.qualcomm.
com/products/snapdragon-855-mobile-platform/. Accessed Nov, 2020.

[5] [n. d.]. Qualcomm Snapdragon Processors. https://www.qualcomm.com/
snapdragon/processors/comparison. Accessed Nov, 2020.

[6] [n. d.]. Snapdragon 855 Mobile Platform. https://www.qualcomm.com/products/
snapdragon-855-mobile-platform. Accessed Sep, 2019.

[7] Gene M Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference. 483–485.

[8] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H Loh, and Onur Mutlu. 2012. Staged memory scheduling: Achiev-
ing high performance and scalability in heterogeneous systems. In 2012 39th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 416–427.

[9] Rajkishore Barik, Naila Farooqui, Brian T Lewis, Chunling Hu, and Tatiana
Shpeisman. 2016. A black-box approach to energy-aware scheduling on integrated
CPU-GPU systems. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. ACM, 70–81.

[10] David Black-Schaffer, Nikos Nikoleris, Erik Hagersten, and David Eklov. 2013.
Bandwidth bandit: Quantitative characterization of memory contention. In Pro-
ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE Computer Society, 1–10.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[12] Younghyun Cho, Florian Negele, Seohong Park, Bernhard Egger, and Thomas R
Gross. 2018. On-the-fly workload partitioning for integrated CPU/GPU architec-
tures.. In PACT. 21–1.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[14] Kristof Du Bois, Stijn Eyerman, and Lieven Eeckhout. 2013. Per-thread cycle
accounting in multicore processors. ACM Transactions on Architecture and Code
Optimization (TACO) 9, 4 (2013), 1–22.

[15] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. 2010. Fairness
via source throttling: a configurable and high-performance fairness substrate for
multi-core memory systems. ACM Sigplan Notices 45, 3 (2010), 335–346.

[16] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. 2012. Fairness via
source throttling: A configurable and high-performance fairness substrate for
multicore memory systems. ACM Transactions on Computer Systems (TOCS) 30,
2 (2012), 7.

[17] Linley Gwennap. 2010. Two-headed snapdragon takes flight. Microprocessor
Report 323 (2010), 1–6.

[18] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.

2010. Understanding sources of inefficiency in general-purpose chips. ACM
SIGARCH Computer Architecture News 38, 3 (2010), 37–47.

[19] MarkHill and Vijay Janapa Reddi. 2019. Gables: A RooflineModel forMobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 317–330.

[20] M. Hind, V. T. Rajan, and P. F. Sweeney. 2003. Phase shift detection: a problem
classification. Technical Report Report 22887. IBM Research.

[21] Qingda Hu, Jiwu Shu, Jie Fan, and Youyou Lu. 2016. Run-time performance
estimation and fairness-oriented scheduling policy for concurrent GPGPU appli-
cations. In 2016 45th International Conference on Parallel Processing (ICPP). IEEE,
57–66.

[22] Magnus Jahre and Lieven Eeckhout. 2018. Gdp: Using dataflow properties to
accurately estimate interference-free performance at runtime. In 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE,
296–309.

[23] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, and Nigel Paver. 2012. A QoS-
aware memory controller for dynamically balancing GPU and CPU bandwidth
use in an MPSoC. In Proceedings of the 49th Annual Design Automation Conference.
ACM, 850–855.

[24] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010. ATLAS:
A scalable and high-performance scheduling algorithm for multiple memory
controllers. In HPCA-16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture. IEEE, 1–12.

[25] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010.
Thread cluster memory scheduling: Exploiting differences in memory access
behavior. In 2010 43rd Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 65–76.

[26] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-
sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.

[27] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In
ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[28] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[29] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
2011. Bubble-up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 248–259.

[30] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa. 2010. Con-
tention aware execution: online contention detection and response. In Proceedings
of the 8th annual IEEE/ACM international symposium on Code generation and
optimization. ACM, 257–265.

[31] Nikita Mishra, John D Lafferty, and Henry Hoffmann. 2017. Esp: A machine learn-
ing approach to predicting application interference. In 2017 IEEE International
Conference on Autonomic Computing (ICAC). IEEE, 125–134.

[32] Onur Mutlu and Thomas Moscibroda. 2007. Stall-time fair memory access sched-
uling for chip multiprocessors. In 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007). IEEE, 146–160.

[33] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems. In 2008
International Symposium on Computer Architecture. IEEE, 63–74.

[34] Thomas Moscibroda Onur Mutlu. 2007. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX security.

[35] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
2000. Memory access scheduling. ACM SIGARCH Computer Architecture News
28, 2 (2000), 128–138.

[36] X. Shen, Y. Zhong, and C. Ding. 2004. Locality Phase Prediction. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems. 165–176.

[37] T. Sherwood, S. Sair, and B. Calder. 2003. Phase Tracking and Prediction. In
Proceedings of International Symposium on Computer Architecture. San Diego, CA,
336–349.

[38] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. 2015. The application slowdown model: Quantifying and controlling
the impact of inter-application interference at shared caches and main memory.
In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 62–75.

[39] Wikichip. [n. d.]. Apple A13 Bionic. https://en.wikichip.org/wiki/apple/ax/a13.
Accessed Jan. 2020.

[40] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[41] Yuejian Xie and Gabriel Loh. 2008. Dynamic classification of program memory
behaviors in CMPs. In the 2nd Workshop on Chip Multiprocessor Memory Systems
and Interconnects.

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://www.rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets
https://www.rambus.com/blogs/get-ready-for-ddr5-dimm-chipsets
https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://www.qualcomm.com/products/snapdragon-855-mobile-platform/
https://www.qualcomm.com/products/snapdragon-855-mobile-platform/
https://www.qualcomm.com/snapdragon/processors/comparison
https://www.qualcomm.com/snapdragon/processors/comparison
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://en.wikichip.org/wiki/apple/ax/a13


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Yuanchao Xu, Mehmet E. Belviranli, Xipeng Shen, and Jeffrey Vetter

[42] Shizhen Xu, Yuanchao Xu, Wei Xue, Xipeng Shen, Fang Zheng, Xiaomeng Huang,
and Guangwen Yang. 2018. Taming the" Monster": Overcoming program opti-
mization challenges on SW26010 through precise performance modeling. In 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
763–773.

[43] Wenyi Zhao, Quan Chen, and Minyi Guo. 2018. KSM: Online Application-Level
Performance Slowdown Prediction for Spatial Multitasking GPGPU. IEEE Com-
puter Architecture Letters 17, 2 (2018), 187–191.

[44] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng, Chao Li, Wenli
Zheng, Li Li, and Minyi Guo. 2019. Themis: Predicting and reining in application-
level slowdown on spatial multitasking GPUs. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 653–663.

[45] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. HSM: A Hybrid Slowdown
Model for Multitasking GPUs. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1371–1385.

[46] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for latency-critical
tasks on shared multicore systems. ACM SIGARCH Computer Architecture News
44, 2 (2016), 33–47.

[47] Qi Zhu, BoWu, Xipeng Shen, Li Shen, and ZhiyingWang. 2017. Co-run scheduling
with power cap on integrated cpu-gpu systems. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 967–977.

[48] Tsahee Zidenberg, Isaac Keslassy, and UriWeiser. 2012. Multiamdahl: How should
i divide my heterogenous chip? IEEE Computer Architecture Letters 11, 2 (2012),
65–68.


	Abstract
	1 Introduction
	2 Memory Interference Characterization
	2.1 Target Architecture
	2.2 Observations
	2.3 Validation: Fairness Control

	3 Memory Interference Slowdown Model
	3.1 Model Formulation
	3.2 Model Construction
	3.3 Model Scaling with Memory Bandwidth
	3.4 Uses in SoC Designs

	4 Evaluation
	4.1 Empirical Validation of The Slow-down Model
	4.2 Results of Co-locations of Real Programs
	4.3 Demonstrations of the Use in SoC Designs

	5 Discussions
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

