
Temporal Exposure Reduction Protection for Persistent Memory

Yuanchao Xu∗, Chencheng Ye†, Xipeng Shen∗, Yan Solihin‡
∗North Carolina State University

{yxu47, xshen5}@ncsu.edu
†Huazhong University of Science and Technology

yecc@hust.edu.cn
‡University of Central Florida

Yan.Solihin@ucf.edu

Abstract—The long-living nature and byte-addressability of
persistent memory (PM) amplifies the importance of strong
memory protections. This paper develops temporal exposure
reduction protection (TERP) as a framework for enforcing
memory safety. Aiming to minimize the time when a PM
region is accessible, TERP offers a complementary dimension
of memory protection. The paper gives a formal definition of
TERP, explores the semantics space of TERP constructs, and
the relations with security and composability in both sequential
and parallel executions. It proposes programming system and
architecture solutions for the key challenges for the adoption
of TERP, which draws on novel supports in both compilers
and hardware to efficiently meet the exposure time target.
Experiments validate the efficacy of the proposed support of
TERP, in both efficiency and exposure time minimization.

Keywords-Memory Security, Persistent Memory, Memory
Exposure Reduction, Hardware-Software Co-Design

I. INTRODUCTION

The emerging persistent memory (PM) is increasingly
supplementing and substituting DRAM as main memory,
due to PM’s higher density, better scaling, lower idle power,
and non-volatility, while retaining byte addressability and
random accessibility [1]–[4]. To enable PM to host persistent
data in memory, an abstraction of persistent memory objects
(PMO) [5] has been proposed to allow one or more data
structures to be kept in memory without file backing. This
removes the need to serialize or deserialize data and avoids
the high overheads of interfacing with the file system. PMOs
can be managed by the OS similar to files (in terms of
namespace and permission) but can be accessed directly
through load/store instructions and contain pointers. They
are attached (i.e., mapped) to a process address space for
access, and later detached (i.e., unmapped). The attach and
detach constructs are typically provided as system calls.

While good for performance, allowing direct memory
access to a PMO poses serious security challenges. First,
persistent data in PMO is now subject to memory safety
vulnerabilities (e.g. accidental/malicious read/write). Sec-
ond, worse than DRAM, data corruption is permanent in a
PMO. Third, data in a PMO is long lived; its existence and
structure are preserved across process runs. The longevity,
plus direct byte-addressability, makes it more vulnerable

as attacks to a PMO could span across executions of the
same or different applications. We anticipate further growth
of memory corruptions and disclosures targeting PMOs,
and thus emphasize the need for practical primitives that
eliminate or reduce such threats.

Despite decades of research, unauthorized memory reads
and writes are still among the most common security at-
tacks [6]–[9]. There are many schemes already proposed
for improving memory safety in general, including adding
memory safety features to C and C++ [10]–[12], Data Flow
Integrity (DFI) [13], data region isolation techniques [14]–
[16], data re-randomization [17]–[19], etc. While these
techniques can improve memory safety, only recently their
principles have been applied to the security of PMO [5], a
technique that combines isolation and re-randomization to
provide better protection and efficiency for PM.

MERR [5] provides temporal protection of PMO data
by bookending a group of accesses with a pair of attach
and detach, along with randomizing the location PMO maps
in the address space at each attach. Protection is provided
in two ways. First, by keeping each exposure window or
EW (i.e. the length of a single attached session) short and
randomizing PMO locations for each EW, any access outside
EW generates protection fault while data location learned
by the attacker in one EW is no longer valid in the next
EW due to the randomization. However, MERR suffers from
four major problems: semantics, security, composability, and
performance overheads.

First, MERR relies on manual insertion of attach-detach
and EWs do not overlap. However, this is problematic in
real life. First, the programmers must ensure that there
is a corresponding detach in each execution/branch path
following the attach, which could be challenging in a pro-
gram with complex control flow. A missing attach leads to
program crashes and a missing detach may lead to zero
security improvement due to large EWs. Second, the error-
prone manual insertion likely leads to many incorrect usages
of MERR, hence reducing or removing MERR security.
Third, MERR is not composable. It defines attach detach as
process-wide in scope, and safe multi-threaded usage is not
guaranteed. Threads execute concurrently, hence EWs from

several threads may overlap and produce undefined behavior.
Furthermore, a nesting of attach-detach may occur (due
to function/library calls, recursion, etc.), and MERR does
not guarantee correct behavior or security under nesting.
Finally, the cost of attach/detach is still prohibitively high
for frequent use as it still involves a system call, TLB
shootdown, etc.

In this work, we propose a framework for temporal expo-
sure reduction protection (TERP) that solves the aforemen-
tioned challenges. First, TERP provides rigorously-defined
semantics of attach and detach, allowing it to deal with com-
plex control flow. TERP introduces TERP poset (partially
ordered set) as a way to organize the set of mechanisms
for access protection of different strengths. We explore the
semantics definition space and investigate each semantics
affects security protection and composability.

Our choice of semantics provides high thread composabil-
ity, which allows safe execution of multi-threaded programs.
Multi-thread safety allows TERP to introduce a new concept
of thread exposure window (TEW), which adds thread-
specific attach-detach semantics to MERR’s process-wide
semantics. The new concept allows TERP to substantially
decrease PMO exposure compared to MERR. Finally, our
solution co-designs novel compiler and architecture sup-
port based on formal definition of TERP. The architec-
ture support ensures the protection goal (i.e. size of the
maximum exposure windows) by transparently silencing
(or lowering on a TERP poset) unnecessary invocations of
TERP operations. Through novel instruction support, nearly
90% of system calls can be avoided and their overheads
substantially reduced. The support also monitors exposure
windows and improves security by ensuring that the target
exposure window is met.

While TERP is potentially applicable to all region-based
memory, is a particularly good fit for addressing the vul-
nerability of the long-living byte-addressable PMOs. Hence,
our discussion in this paper focuses on PMO protection. It is
worth mentioning that TERP design is potentially applicable
to other isolation techniques [14]–[16], [20], [21], as these
techniques also require programmers to manually insert
special instructions. Overall, this paper makes the following
contributions:

1) A formal TERP poset framework, which rigorously
defines the semantics of the attach and detach con-
structs.

2) Exploration of the semantics space of TERP, and the
choice of TERP semantics that achieves both compos-
ability and security for multi-threaded programs and
allows nesting.

3) Novel architecture and compiler mechanisms to sup-
port efficient programming systems for TERP.

4) Empirical validation of TERP showing huge perfor-
mance overheads reduction (6% and 15% for WHIS-
PER and SPEC benchmarks vs. 20% and 156% with

MERR).
5) A quantitative case study of security analysis against

data-only attack, showing 20× reduction in attack
surface vs. MERR.

II. BACKGROUND

Persistent Memory Programming Support: There are at
least two paradigms for using PM. One may use it as storage
to host a file system, the other uses it via a new abstraction
where a data structure is wrapped into a persistent memory
object (PMO), which allows the data structure to be hosted
persistently in physical memory without file backing. PMOs
may combine some features of a file system (naming,
permission, durability, and sharing) and some features of
data structures (pointer-rich, address space mapping, purely
load/store access) [5]. In this paper, we assume the latter.

A PMO may be a container for a data structure that lives
beyond process termination and system reboots. A PMO
requires several properties to be supported: crash consistency
allows a PMO to remain in a consistent state even upon
software crashes or system power failures, system naming
and permission allows a PMO to be located and reused
across runs, attach/detach primitives where a PMO can
be attached to a process address space when needed and
detached when not needed, relocatability where a PMO can
be attached at different parts of a process address space at
different times. PMOs may be implemented as pools [22]–
[25] and given a unique identifier to each PMO.

Table I
POOL APIS DESCRIBED IN PRIOR WORK [5], [23], [24]

Function Description
PMO* PMO create (
size, mode)

Create a PMO with the specified size.
The running process is the owner.

PMO* PMO open (
name, mode)

Reopen a PMO using name that was
previously created.

PMO close(PMO* p) Close a PMO p.
OID pmalloc (
PMO* p, size)

Allocate a chunk of persistent data with the given
size on PMO p and return the PMOID of the first byte.

pfree(OID) Free persistent data pointed by the ObjectID.
void* oid direct(oid) Translate an ObjectID to a virtual address.
void* attach(
PMO* p, permission)

Memory map a opened PMO p into process
address space with requested permission.

void detach(PMO* p) Memory unmap an attached PMO p
from process address space.

To support relocatability, each pointer (64-bit) used in a
data structure consists of a pool ID (ObjectID) and an offset
within the PMO. PMDK [23] and other prior works [5],
[22], [24] have described an interface for manipulating pools
and objects (Table I), which we adopt. We assume the
following assumptions of PM programs: (1) attach() returns
an immutable handler that records the current virtual address
of this PMO. The programs access the data of this PMO
through this handler. (2) No inter-PMO pointers, which
means objects pointing to each other reside on the same
PMO. (3) The program has at least one matched attach()
and detach() pairs.

Fast PMO Attach and Detach: A PMO attach system call
attaches (memory maps) a PMO to a process address space
by initializing page table entries (PTEs) that point to this
PMO; the detach system call detaches (memory unmaps)
this PMO from the process address space by invalidating
these page table entries. The overhead of an attach() or a
detach() call grows linearly with PMO size, as the number
of modified PTEs grows linearly with PMO size.

Process's Page Table
L3 Dictionary

….

PMO

L2 Dictionary

….

L1 Dictionary

….

Data
(4KB Per Entry)

….….

…..Attach/Detach Entry

Page Table Subtree

(a)

(b)

ld/st
(Virtual Address)

Process-wide
PMO Permission

Core
Permission Matrix

VA Range -> Perm.

Figure 1. (a) Fast attach and detach a PMO with the embedded page table
subtree. (b) Permission Matrix.

A recent work called MERR [5] proposes to embed a
page table subtree into the PMO as persistent metadata [5],
as shown in Figure 1 (a). With it, upon an attach() call,
the process page table only needs to initialize one PTE to
point to the PMO page table subtree. When the detach()
is invoked, the process page table removes this PTE and
a TLB invalidation happens, and the process loses access
to the PMO. This mechanism reduces the overhead of
attach() and detach() to constant, regardless of the PMO
size. This basic idea, embedding a page table subtree into
a PMO, however, cannot discern the different permissions
for different processes. MERR [5] hence expands the design
with a process-specific permission matrix hardware support,
as shown in Figure 1 (b). attach(PMO ID, Permission)
adds one entry to the permission matrix with the requested
permission and virtual address range of this PMO, and
detach(PMO ID) removes the entry from the permission
matrix. A ld/st instruction, checks permission against both
the permission matrix and TLB. The fast attach and detach
mechanisms are combined with address randomization to
improve memory safety. TERP leverages it as one of the
underlying mechanisms for temporal protections, and builds
up a complete conceptual framework TERP along with the
needed programming/architectural support.

III. TERP CONCEPTS, CONSTRUCTS, AND RELATIONS
WITH SECURITY

This section presents formal definitions of several key
concepts of TERP and its core constructs, along with the

connections with security. The conceptual framework offers
the necessary clarity and foundation for the deployment
of TERP and the needed programming system support.
It then examines the programming challenges of TERP,
which motivates the discussions on the semantics of TERP
constructs, driven by which, it proposes three alternative
semantic definitions and discusses their pros and cons, in
terms of both security and composability.

A. Definitions

We start with several auxiliary terms.
Definition 1: Permission set: A permission set is a set

of binary values that define the access permissions to a set
of data objects (say S), represented as {a(Oi) = b — a ∈
{read,write, execute}, Oi ∈ S, b = 0|1 }.

Definition 2: Permission group G(P): A permission
group G(P) is a set of entities G (e.g., threads, processes,
users) that share a permission set P , that is, P ⊆

⋂
g∈G p(g),

where, p(g) is the permission set of agent g.
Definition 3: TERP: A mechanism offers a TERP pro-

tection to a memory region against a permission group G if
the mechanism reduces the time when the memory region
is accessible by G.

TERP protections can be in various kinds with different
strengths and scope. Two examples are as follows. (i) Inser-
tions of detach() and attach() calls on a PMO periodically
into a program, as done in MERR [5], which reduce the
time when a process can access a PMO. (ii) Insertion into
a program the instructions to grant or revoke thread access
permission for a PMO, which reduces the time when the
thread can access the PMO. The two kinds of protections
differ in the targeted permission groups: the former against
all threads in a process, the latter against one specific thread
only.

Definition 4: TERP Poset: A set of TERP protection
mechanisms form a TERP poset if they are in a partial order
based on certain attributes.

The formulation makes existing mathematical tools in or-
der theory directly applicable to TERP. The Hasse Diagram,
for instance, can be used to visually represent the elements
of a TERP poset and the relations of their partial ordering,
as illustrated in Figure 2. Section IV-C will show some
important benefits a multiple-level TERP poset can bring.

A TERP protection mechanism usually consists of two
types of basic constructs: one grants accessibility, the other
revokes it. We call them granting and depriving constructs
respectively. Different TERP protections have their own
implementations of the two basic constructs.

A primary metric used for measuring the effect of de-
ployed TERP protections is the length of an exposure
window.

Definition 5: Exposure Window: For a permission group
G, an exposure window of a PMO is a contiguous time
window in which the PMO is accessible by G.

Permission on
user {A}

Permission on
user {B}

Attach/detach
by process
{q1}

Attach/detach
by process
{q2}

Permission on
user groups
{G1, G2}

Thread
permission
control on
threads {t1}

Thread
permission
control on
threads {t2}

Thread
permission
control on
threads {t3}

Attach/detach
by process
{p}

Figure 2. A Hasse Diagram that represents a TERP poset in terms of the
partial order of permission groups, regarding their accessibility to a PMO.

Efficiently reducing the length of exposure windows is a
central mean of TERP for enhancing memory safety. We
next elaborate the connections of this temporal protection
with memory security.

B. Connections with Security

By offering protection at the temporal dimension, TERP
complements other security measures. We discuss it in the
context of the following threat models on PMO.
Threat Model: The focus is on data-only attacks [9], [16],
[26]. Side-channel and microachitectural leaks are not the
focus. In the threat models, data structures in PMO may
contain buffers and pointers. Code that accesses PMO may
contain vulnerabilities via which malicious reads or writes
are possible to PMOs (e.g., buffer overflow, format string).
While a PMO is attached, the attacker can probe, read or
write the data in the PMO. The attacker may compromise
a thread of the same process and try to exploit the memory
vulnerabilities. Control-flow attacks are mitigated through
state-of-the-art control-flow attacks mitigations [27]–[32].

We assume trusted system software (e.g., OS), which
manages address space isolation between processes. With
that, reading or writing data to the memory region that is
not mapped in the page table will not be permitted and
will generate segmentation fault exceptions. Furthermore, we
assume that the processor memory management unit (MMU)
is implemented correctly, in that it will not allow access
of memory that is not mapped to the page table. We also
assume a randomization mechanism (e.g. random number
generator) that is trustworthy.

User-level instructions can only be inserted by the pro-
grammer or compiler. It is assumed that attackers are
prevented from injecting or reusing these instructions (e.g.
through ROP); call gates and binary inspection and rewriting
techniques like ERIM can be used to ensure it [33].
Connections to Security: As a class of protections in a
dimension complementary to existing memory protections,
rather than seeking to protect against specific vulnerabilities,
TERP makes unauthorized reads or writes to data in PMOs
difficult by applying the principle of least privileges: Unau-
thorized reads or writes are the fundamental schemes many

types of memory attacks rely on. The following theorem is
the fundamental connection of TERP with memory security:

Theorem 6: Temporal protection theorem: If a memory
attack requires a memory region to be stationary (i.e. loca-
tion unchanged) and accessible for at least t time to succeed,
the attack can be prevented as long as the exposure window
of the memory region is smaller than t, and locations of the
region changed before t elapses.

The theorem is intuitive; its implication is however pro-
found. It provides the fundamental rationale for the benefits
of TERP, and also offers the basis for setting the objective
of TERP protections in preventing certain kinds of memory
attacks. Moreover, it suggests the powerful synergy between
TERP and other security measures. For instance, TERP may
combine with memory space layout randomization such that
every time a PMO gets (re)attached to the memory space,
it is put to a random location. The randomization makes
memory probing hard to continue across exposure windows.
As a result, as long as TERP makes each exposure window
smaller than the minimum time the probing requires to find
the base address, the attacks can be prevented.

TERP mechanisms form a poset due to the mecha-
nisms having different levels of permission and isolation.
A higher level isolation usually provides higher protection
but incurs higher overhead. For example, a process-wide
attach/detach provides stronger security protection when
PMOs are detached. For example, even Spectre attacks or
attacks exploiting errors in implementing the MMU cannot
succeed when PMO is detached since it is not present in
the process address space. Furthermore, attaching the PMO
requires a system call through which the OS may perform
additional security checks. In comparison, setting thread
access permission control relies on intra-process isolation
techniques such as Intel MPK. It provides weaker protection
because the permission control setting relies on (PKRU)
registers that can be changed at the user level. Therefore,
the higher level protection should be used at coarser grain
triggers or intervals, while lower level protection should be
used at finer grain triggers or intervals.

Finally, in addition to temporal protection, TERP con-
structs are applied separately for separate PMOs, hence
also providing spatial protection. Our empirical study in
Section VII reveals that even though an application may
use multiple PMOs, the application only uses 1 or 2 PMOs
at any given time, which provides opportunities for TERP
to keep unused PMOs inaccessible to the application. Prior
work [19] found that the fewer data is mapped in a process,
the lower the possibility to identify a target page table entry
(PTE).

IV. ADOPTION CHALLENGE I: SEMANTICS

We identify two key challenges for the adoption of TERP.
One is on defining the semantics (i.e., intended behaviors)
of TERP core constructs, the other is on inserting into a

program the calls of TERP constructs appropriately. We
will now discuss these semantics challenges and deployment
challenges. We note that our discussion will focus on a single
PMO, but the semantics extend trivially to multiple PMOs
as we assume that no inter-PMO pointers.

A. Why isn’t the basic semantics sufficient?

As Section III mentions, there are two basic constructs in
TERP, granting and depriving constructs. At the very high-
level, their semantics are that the granting construct adds ac-
cessibility of a PMO, while the depriving construct removes
accessibility of a PMO. Such a level semantics definition
however is insufficient as it does not lend to the necessary
security guarantee and practical deployment. To illustrate
the complex consideration in defining the semantics, we will
draw on attach() and detach() system calls as example TERP
granting and depriving constructs. MERR [5] did not define
clear semantics and ignore important issues such as security
guarantee, composability, and concurrency.

We start by defining three semantics choices for attach()
and detach(): Basic, Outermost, and first-come first-serve
(FCFS), illustrated in Figure 3. The lessons we learned from
the three semantics lead to our fourth and chosen semantics
EW-Conscious.

Basic Semantics: Each attach() must be followed by a
detach(), and every detach() must follow an attach(). Any
other attach or detach is considered invalid. All valid attach
and detach calls are fully executed and applies to the whole
process.

Example: Figure 3 shows an example code, with a pair of
attach/detach, followed by nested pairs of attach/detach that
from a function call. Accesses to data a within the PMO are
interleaved. With the basic semantics, the first attach/detach
pairs (lines 1 and 3) are valid and define the first exposure
window (EW). An access to the PMO within the EW (line
2) is valid while outside the EW (line 4) is invalid. The
second attach() (line 5) is valid, but the third attach() (line
7) returns an error. The basic semantics requires that an
attach() is followed by a detach, not by another attach().
Further access and detach (lines 8-9) are undefined due to
the prior attach call error.

Security and Composability: Let us analyze Basic on se-
curity and composability. Security is about reaching the
security objective in terms of the maximum exposure win-
dow size. Composability has two aspects. For the function
or module aspect, it means that when well-formed func-
tions or modules with TERP constructs are invoked in a
program, they would introduce no extra errors nor jeopar-
dize the exposure window guarantees for the program. For
the thread/concurrency aspect, it means that multiple well-
formed threads with TERP constructs can work well together
without compromising the exposure window guarantees or
introducing errors.

1 attach()
2 = a
3 detach()
4 = a
5 attach()
6 foo()

7
8
9

10 = a
11 detach()

foo() {
 attach()
 = a
 detach()
}

Basic

valid
valid
valid
invalid
valid

invalid
undef
undef

invalid
invalid

Outermost

valid
valid
valid
invalid
valid

Valid-silent
valid
Valid-silent

valid
valid

FCFS

valid
valid
valid
invalid
valid

Valid-silent
valid
valid

valid (trigger reattach)
valid

Example Code

Exposure WindowLegend:

Figure 3. Illustrating the differences of the attach/detach semantics and
their implications on security and composability.

For strong memory security, one may need to insert many
pair-matched attach() and detach() into a program to ensure
small exposure windows. However, composability concerns
may arise. For each attach() call inserted, the programmer
is burdened with inserting a matching detach call following
every execution path from the attach call. Similarly, for each
detach call inserted, there must be a matching preceding
attach call leading to the execution path where the detach
call is located. This places a substantial burden on the
programmer. Missing an attach() may crash the programs
(for detaching an unmapped PMO), while missing a detach
can even void security improvements (for creating a large
exposure window).

Another serious composability concern arises with a
multi-threaded program. Suppose that each thread is well-
formed with the right attach and detach calls added to
provide intended exposure windows in the thread. But when
multiple threads are combined to run concurrently, the
attach-detach windows in different threads may overlap in
time and violate the semantics. If an attach() is made by one
thread and then by another, according to the basic semantics,
the second attach is invalid. Likewise, double detaching also
leads to execution errors.

There is a parallel between the attach/detach semantics
for PMOs with fopen/fclose and map/munmap constructs
for file systems. Ignoring that the interface applies to dif-
ferent system objects, it is noteworthy that fopen/fclose
and mmap/munmap appear to approximately follow the
basic semantics, and therefore suffer from similar strengths
(simplicity) and weaknesses (complexity from pair-matching
on diverging execution paths, and function and thread com-
posability problems).

It is worth noting that the basic semantics in Section IV-A
is similar to the semantics of traditional fopen/fclose and
mmap/munmap constructs in file systems. It is however
not preferable in this security context. Unlike the previous

contexts where usually only a few matching calls of the
constructs are needed in a program, in our context, with
that semantics, many matching attach/detach pairs would
need to be put into a program by a programmer, causing
programming challenges and compatibility problems in mul-
tithreaded programs.

B. Other Considered Alternatives

Figure 3 illustrates two other semantics. One is Outermost
semantics: Attach-detach pairs must form perfect nesting
relations if they overlap; only the outermost attach or detach
is performed and inner attaches and detaches are all made
silent. This semantics cannot offer needed temporal protec-
tions as the actual attached time can be arbitrarily long.

The other alternative is FCFS semantics: An outermost
attach is valid and performed, whereas inner attach calls
are silent. The first detach encountered after an attach() is
performed, other detaches are silent. Any access prior to the
outermost detach triggers an automatic PMO reattach, and
the first detach following it is performed. The issue with this
semantics is that within the outermost attach and detach, it
is hard to distinguish a benign access (that should result in
reattaching the PMO) from an invalid access (that may be
triggered by the attacker).

Both Outermost and FCFS also suffer from multi-thread
composability concerns.

C. EW-Conscious Semantics

Based on lessons learned from the previous three se-
mantics, we propose exposure window-conscious semantics
or EW-conscious semantics in short. It also requires non-
overlapping attach-detach pairs, but only within a thread.
It considers thread-level permissions and process-level ad-
dress mappings together, allows implicit lowering of TERP
constructs in a TERP poset, and supports both function and
thread composability as well as automatic deployment.

Semantic Description: Within a thread, no overlap of attach-
detach pairs is allowed. Attach-detach pairs across different
threads1 may overlap. At an attach call, real attach (address
mapping) happens if and only if the PMO is not yet attached.
Otherwise, the call lowers to a thread-level TERP operation
which opens the access permission of the calling thread to
the PMO. At a detach call, real detach happens if and only
if (i) the time span from the most recent real attach (by
whatever thread) exceeds a predefined constant L (e.g., a
value near the target exposure window size) and at the same
time (ii) no other threads can access this PMO. Otherwise,
the detach lowers to a thread-level TERP operation which
closes the access permission of the calling thread to the
PMO.

1Unless stated otherwise, all threads in discussion are in the same
process.

Example: An example of the semantics is shown in Figure 4.
Suppose that addresses A, B and C reside in PMO1. First,
Thread 1 attaches PMO1 with read permission. Since PMO1
was unmapped, the attach is performed to map PMO1 to
the address space. The subsequent ld A is permitted but
st B is denied due to insufficient thread permission. For
Thread 2, the attach adds intended read and write thread
permission and hence the subsequent st B is permitted. After
that, the detach call from Thread 1 removes its permission,
but does not detach the PMO as thread 2 can still access it.
The subsequent ld C is denied access. The detach call from
Thread 2 removes its permission and detaches PMO1 from
the process address space. The subsequent st C is denied and
generates a segmentation fault since the PMO is no longer
mapped to address space. For Thread 3, all accesses are
denied because the thread never makes an attach call prior to
the accesses. The example also illustrates that the semantics
creates a distinction between process-wide exposure window
(EW) versus thread-level exposure window (TEW).

Thread 1

attach(R)

ld A

st B

detach()

ld C

Thread 2

attach(RW)

st B

detach()

st C

Thread 3

ld A

st B

Exposure
Window (EW)

Legend: Thread Exposure
Window (TEW)

Invalid
(outside TEW)

Invalid
(Insufficient
permission)

Invalid
(outside EW)

Invalid
(no attach)

Figure 4. An example of EW-conscious semantics.

Composability and Security: The EW-conscious semantics
achieves high thread composability by allowing each thread
to focus on its own attach and detach calls regardless of
what other threads do. It benefits from the implicit lowering
to thread permission controls. Its function composability is
good for the non-overlapping requirement within a thread.
Thread-level permission controls ensure that the thread ex-
posure window size meets the requirement as long as the
attach-detach pairs are inserted appropriately within each
thread. The time span-based real detaches add another layer
of process-level protection.

The benefits of the temporal protection show up when
combined with other protections. For instance, a PMO will
not reside on the same address for a time longer than
an exposure window if it combines with address layout
randomization 2. The randomization just needs to augment
the TERP protection by (1) mapping a PMO to a random
address at every real attach, and (2) remapping the PMO

2It is assumed that accesses to a PMO are through relocatable PMO
APIs [23], [24].

to a different address at the detaches where condition (i) in
the semantics description holds but condition (ii) does not.
The latter ensures that even if the PMO is never completely
detached due to window overlapping across threads, it still
gets randomized periodically.

V. ADOPTION CHALLENGE II: EASE AND EFFICIENCY

The second key challenge for TERP adoption is in its
deployment: how to make it easy to use by programmers,
while simultaneously offering the desired protection without
imposing any substantial performance overhead?

A. Automatic Constructs Insertion

The EW-conscious TERP semantics requires non-
overlapping and matching attach and detach calls on every
path (in a thread). Requiring the programmer to manually
insert such calls would be a burden, hence we propose to
automate it. The compiler’s goal is to insert attach and
detach completely and correctly, while meeting the target
EW length. We develop a region-based code analysis to
do it efficiently. After the automatic insertion, we employ
architecture support to reduce the overheads at runtime,
which is described later in the paper.

Figure 5(a) illustrates our static analysis approach. Each
node in the control flow graph (CFG) represents a basic
block (BB) and each edge represents a control flow edge.
Gray nodes represent BBs that contain PMO accesses. From
the starting point to the end point, the naive path-sensitive
insertion needs to consider all 32 paths for inserting attach()
and detach() calls appropriately. The reason why so many
paths need to be analyzed is that the PMO states may be
different at a confluence point for different paths.

0
1 2

3 4 5 6

11

13

IF
IF IF

IF

Start

End

Basic blocks with PMO accesses Basic blocks without PMO access
(a) (b)

Region 2

No PMO attached

7

10

12

Region 1

IF

No PMO attached

No PMO attached

9
8IF

0
1 2

3 4 5 6

IF
IF IF

7

11

13
IF

10

12

IF
9

Insert Detach()

Figure 5. Control flow graph (CFG) illustrating basic path-sensitive
insertion (a) vs. our localized path-sensitive insertion (b).

In order to reduce the static analysis complexity, we
make an observation that inserting a detach call changes the
PMO attachment state back to the initial state (PMO is not
attached) regardless of paths leading to the detach point. If
at a confluence point, the state is known to be detached, the

CFG can be split into two regions: one with paths preceding
the confluence point and one following it. These regions
can then be considered independently, hence reducing the
analysis complexity. For each region, attach calls can be
inserted to each path so that attach and detach pairs are
maintained. We refer to this approach as localized path-
sensitive insertion. In Figure 5(b), the algorithm first inserts
a detach call to the exit of BB7, and then independently
works on each of the two regions separated by BB7 (BB8
is ignored as it does not have PMO accesses).

The algorithm works on a data structure called PMO
window flow graph (PMO-WFG), which is a set of sub-
graphs of the program CFG, covering all BBs with PMO
accesses. Specifically, each subgraph is a code region (R),
which meet the following three conditions: 1) There is a
header in R that dominates all BBs in it; 2) A BB post-
dominates all nodes in R; 3) The longest execution time
(LET) in all paths of R is less than a threshold (preset based
on the target maximum exposure window size). If the total
iterations of a loop cannot be decided in static, we follow
the common practice in static analysis to assume it to be
a large number (e.g., 1k) to estimate LET. Sec VII will
show that the assumption does not cause oversized exposure
windows thanks to a timer-based measure in hardware (next
section) and the fact that a loop always forms a code region
with attach added at the confluence point. With the PMO-
WFG, we can independently perform path-sensitive insertion
in each region in the PMO-WFG.

Algorithm 1 PMO-WFG construction and attach()/detach()
insertion.
1: Build CFG and the hierarchy of regions
2: Compute longest execution time (LET) of each region
3: Identify BBs with PMO accesses, set them as unvisited.
4: for each unvisited basic block B with PMO accesses do
5: create an empty graph g and add B into it
6: while LET of the next-level region NLR < threshold do
7: if NLR covers unvisited BBs then
8: add NLR into g

9: put g into PMO-WFG
10: Change the status of all blocks visited by g

11: for each graph in PMO-WFG do
12: if thread exposure window ̸= 0 then
13: Perform path-sensitive insertion in this graph
14: else
15: Insert attach() and detach() at the entrance and the exit in this graph

The algorithm of PMO-WFG construction and at-
tach/detach insertion is outlined in Algorithm 1. Initially, we
construct the CFG of the program and build the hierarchy
of regions by the classic code region analysis. With a
conservative cycles per instruction, we estimate the longest
execution time (LET) of all paths in each region from
lower-level regions to higher-level regions, and the higher-
level region computations can reuse LETs of the lower-level
regions. Pointer analysis is used to identify BBs with PMO
accesses and pointer aliases. An unvisited array of these BBs
is initialized for the next step. Thread exposure window is a

configurable value to control the frequency to insert attach()
and detach().

B. Efficiency via Architecture Support

A main challenge of using TERP is the overhead by
frequent attach and detach calls inserted by the compiler
conservatively to limit the EW and TEW in a region. A call,
if fully performed as a system call, involves overhead similar
to a context switch, including saving and restoring process
state, switches between user and kernel modes, pipeline
flushes, and other microarchitecture costs. Our architecture
support seeks to reduce these overhead.

There are two opportunities for performance improvement
that we explore. First, we observe that static analysis often
detaches too soon, only to attach again soon afterward. This
presents an opportunity to combine two closely spaced EWs
into one. Second, we note that an attach and detach call
may be executed in one of two ways: (1) performed fully
to map or unmap into/from address space, (2) performed
partially to grant or revoke thread access permission. While
both ways can be implemented as system call handling code,
the latter can be accelerated. We refer to the former oppor-
tunity as window combining and the latter as conditional
attach/detach.

// 1st iter (i=0)
attach()
 computation
detach() //silent

// 2nd iter (i=1)
attach() //silent
 computation
detach()

(b) Miscombining

attach()
 computation
detach() //silent
long computation

detach() //auto

attach()
 computation
detach()

(c) Partial combining

attach()
 computation
detach() //silent

attach() //silent

randomize() //auto

detach()

(a) Full combining

 Max Exposure Window (EW)

Figure 6. Illustrating three window combining cases.

The window combining may encounter three cases il-
lustrated in Figure 6. In part (a), the first detach() is
encountered long before reaching the maximum EW, hence it
is delayed (silent). Later, the second attach() is encountered
and because the PMO was not detached, the attach() is also
converted to silent. The result is having a larger window that
combines two (or more) smaller EWs, without exceeding the
target maximum EW. In part (b), due to long computation
after the first silent detach(), the maximum EW is met
before the next EW, hence the system automatically triggers
detach() to close the current EW. In part (c), two EWs are
combined into one, but the maximum EW is encountered
before the EW ends. In this case, the system automatically
triggers PMO randomization in the mean time before the
upcoming detach() is performed. In this way, even though
the combined EWs may slightly exceed the maximum EW,
the PMO stays in one virtual address location not any

Circular Buffer

Attach()Increase
Every 1ms

Sweep

Cycle
count

Timer
(32b)

2

1

3

Tail

Head

PMOID
(10b)

TS
(10b)

Ctr
(14b)

DD
(1b)

1 3 0 1
2 5 3 0
3 12 1 0
4 15 2 0

T-TS>EW

CONDDT
(PMOID)

Ctr = 0?No Yes

T-TS < EW?Revoke thd perm
Decrement Ctr

Revoke thd perm
DD = 1

Detach() call
Remove entry

No Yes

CONDAT
(PMOID, Perm)

CB hit?No Yes

DD = 1?Add entry
Ctr=1, DD=0
Set thd perm
Attach() call Set thd perm

Increment Ctr

No Yes

Case 1: first
attach Case 2: subseq

attach Case 3: silent
attach

Case 4: Partial
detach

Case 5: Full
detach

Case 6: Delayed
detach

Self-detach() or
randomize

4

(b) (c)

(a)

Set thd perm
Ctr = 1
DD = 0

Figure 7. Circular buffer (a), and the logic for conditional attach (b) and
conditional detach (c).

longer than the maximum EW. This partial combining case is
crucial for multi-threaded scenarios where the combination
of EWs from multiple threads may create a combined EW
that exceeds the maximum EW, even though the compiler
has ensured that each thread’s EW is short.

To support window combining, our architecture first as-
sumes that each attached PMO is assigned its own protection
domain using support such as Intel MPK [20], which allows
per-thread access control. We also assume fast attach and
detach using embedded PMO page table and randomization
using PMO space layout randomization technique from [5].
Next, we describe the support we propose.

For window combining, we use a circular buffer shown
in Figure 7(a). Each entry keeps the PMO ID, a timestamp
(TS) that records the time of last PMO attach, a counter (Ctr)
which tracks the number of threads that have made an attach
call, and a delayed detach (DD) status which indicates if a
detach has been delayed. A newly attached PMO is added
at the tail 1 . A timer is incremented at a coarse granularity,
such as every 1us 2 . Periodically, we sweep the buffer from
head to tail 3 , to identify PMOs for which a detach call
has been made but they have not been detached yet, as
indicated by DD = 0. Then, the counter is checked 4 . If
the counter is zero (indicating no thread still works on the
PMO), the detach() system call is made to fully detach the
PMO. Otherwise, some threads still access the PMO, hence
the PMO is randomized. Randomization requires all threads
to be suspended and appropriate structures invalidated or up-
dated (e.g., TLB shootdowns and page table update). In the
example in Figure 7(a), if current time is 15 and maximum
EW is 10, PMO1 will be detached (Ctr = 0, DD = 1) but
PMO2 will be randomized (Ctr > 0). PMO3 and PMO4
are left alone as maximum EW has not been reached.

To support conditional attach/detach call, there are sev-
eral possible mechanisms. One design is to register the
PC addresses of attach and detach system calls in special
registers. When the program counter points to any of them,
the hardware intercepts it and directs the instruction fetch
only if a certain condition is met. An alternative design
is to introduce conditional attach and detach instructions
that if they lead to a certain condition at execution, an
attach or detach system call is made. The first design
avoids modifications to the ISA but adds special watch
registers. Either design is equally possible; however for
simpler illustration, we assume the second design. We add
two user-space instructions, conditional attach (CONDAT)
and conditional detach (CONDDT). CONDAT’s two source
operands include a PMO ID and a permission request (R or
RW). CONDDT only takes PMO ID as its source operand.
Our compiler algorithm performs static analysis and inserts
CONDAT and CONDAT into code in place of actual attach or
detach system calls.

Figures 7(b) and (c) show how the two instructions are
executed. For CONDAT, if the PMO is not found in the
circular buffer (CB), we allocate an entry, initialize its Ctr to
1 and reset the DD. The thread permission is also initialized
as requested. An attach() system call is made to map the
PMO to address space since this is the first attach attempt
(Case 1). If the PMO is found in the CB, we check the
DD. DD=0 indicates subsequent attach attempts by other
threads (Case 2). In this case, we set the thread permission
appropriately and increment Ctr; system call is skipped.
Finally, if DD is set (Case 3), the PMO was in a delayed
detach state due to window combining. Since the PMO was
not actually detached yet, we simply reset DD, set Ctr to 1,
and set the thread permission. In this case, we have elided a
pair of detach and attach system calls, resulting in substantial
performance savings.

For CONDDT, we check whether Ctr is zero. If not, this
is not the last thread to detach it, hence all we need to do
is to revoke thread permission and decrement Ctr (Case 4).
Otherwise, we check if EW has been met or exceeded. If
exceeded (Case 5), detach system call is invoked. Otherwise
(Case 6), we do not need to detach the PMO at the
moment, and we can simply set the delayed detach status
(DD bit) and revoke thread permission. The PMO will later
be automatically detached through sweeping when EW is
met/exceeded, or if an attach call is made before then, we
turn the attach() silent and combine the EWs.

The hardware cost is mainly due to the addition of the
circular buffer. It contains 32 entries and each entry is 34-
bit in size. We use Cacti [34] to evaluate the die area needs
with the 45nm Nehalem processor [35]. The total on-chip
space introduced is 140 bytes and consumes a tiny 0.006%
of the die area.

VI. EVALUATION METHODOLOGY

Workloads: To measure TERP performance on real-world
persistent applications, we use WHISPER benchmarks [36].
WHISPER includes key-value stores Echo and Redis, a
database YCSB, a transaction processing benchmark TPCC,
and two data structures, hashmap and ctree. All these bench-
marks use a single PMO. We execute 100K transactions or
operations over a 1GB PMO with a single thread.

To measure multi-threaded performance on multiple
PMOs, we use all SPEC2017 [37] applications that are
written in C/C++ parallelized using OpenMP directives. We
allocate each heap object larger than 128KB as a PMO, to
evaluate a multi-PMO scenario. These parallel benchmarks
run on the simulated multi-core system with test input size.

PMO only stores heap data in these benchmarks. All other
data is allocated in DRAM, including all stack variables,
non-persistent data in WHISPER, and small objects in
SPEC2017.
Simulation: Our simulator is built on Sniper [38], a cycle-
accurate X86 simulator. We implement an LLVM pass [39]
that uses the region-based analysis in LLVM [40] to insert
conditional instructions (magic instructions in Sniper), pro-
ducing protected programs. (Section V-B).

Table II
SIMULATION PARAMETERS.

Processor 4-core, each 2.2 GHz, 4-way OoO, 128-entry ROB,
x86-64 ISA, Pentium M branch predictor

Cache private L1D cache, 8-way, 32KB, 1 cycle access time;
Shared L2 cache: 16-way, 1MB, 8 cycles access time

Memory DRAM latency: 120 cycles; NVM latency: 360 cycles;
64 GB/s Bandwidth;

TLB
L1 data TLB: 4KB pages, 4-way, 64 entries, 1 cycle;
L2 TLB: 6-way, 1536 entries, 4 cycle;
30 cycles TLB miss penalty

Others

Permission matrix check/update: 1 cycle;
Silent conditional attach/detach: 27 cycles
Attach(): 4422 cycles, Detach(): 3058 cycles
Randomization: 3718 cycles, TLB invalidation: 550 cycles

Table II shows our simulation parameters. PMO-related
latencies are obtained from microbenchmarking on a real
system. In the setting, permission matrix check adds one
cycle after TLB lookup [5]. For silent attach/detach laten-
cies, we use the average time to set Intel MPK permission,
which includes memory fence overheads. For system call
overheads, we implement them and microbenchmark them
on a real machine. Then, we use the average overheads of
these system calls in the simulation.
Configurations: We evaluate the following schemes: (1)
MERR insertion and MERR architecture (MM), where
programs execute with manually-inserted attach and detach
that are executed fully as system calls with EW target of
40 us on the MERR architecture. (2) TERP insertion on
MERR architecture (TM), where programs execute with
automatic compiler-inserted attach and detach with EW
target of 40us and additionally TEW target of 2us, on

MERR architecture. With TM, conditional attach/detach are
fully executed as system calls. (3) TERP insertion and
TERP architecture (TT), where programs execute with auto-
matic compiler-inserted attach and detach with EW targets
of 40us/80us/160us and TEW target of 2us, with TERP
architecture support that includes window combining and
conditional attach/detach. The rationale for the choice of
EW and TEW is discussed in Section VII-A.

VII. EXPERIMENT RESULTS

A. Exposure Window Size Selection
To select an appropriate thread exposure window (TEW)

target for both security and performance considerations, we
perform an empirical study while assuming a data-only
attack pattern from a previous work [26]. In that threat
model, one way to cause persistent corruption in a single
object is to corrupt the content after the last write by the
victim program, because the corruption persists until object
deallocation. We call the time window object dead time. If
earlier writes were selected instead, the corruption would
be less effective as the object would be overwritten by the
victim program later. Hence, the object dead time represents
an important attack surface.

We measured eight SPEC 2017 benchmarks and five Heap
Layer benchmarks [41], a benchmark suite with frequent
allocations and deallocations. We report the distribution of
dead times in Figure 8. From the figure, we can see that in
95% of the cases, the dead time is 2us or larger. So if we
choose a target TEW of 2us, the attack surface would be
reduced by 95%.

0-2 2-1
0

10
-20

20
-40

40
-80

80
-16

0
16

0-3
20

32
0-6

40
64

0-1
28

0
12

80
-25

60
25

60
-51

20
51

20
-10

24
0

10
24

0-5
12

00
51

20
0+

Time (us) from the last write to object delocation

0

4

8

12

16

20

24

Pe
rc

en
ta

ge
 (%

)

Figure 8. Distribution of attack surface for all heap objects, representing
the time from last write to an object until the object deallocation.

The selection of an exposure window (EW) size is related
with the time needed by memory attacks to discover the tar-
get addresses. Our experiments consider EW of 40us, 80us,
160us, as these sizes produce lower than 0.01% probabilities
for the state-of-the-art ASLR breaking techniques [42], [43]
to find a target address for a 1 GB PMO.

B. Single-PMO and Single-Thread Results on WHISPER
Results for WHISPER benchmarks with 40us EW are

shown in Table III; TEW is set to 2us. For the MERR

insertion on MERR architecture (MM) scheme, the table
shows the average and maximum EWs, as well as the
PMO exposure rate (ER) defined as the total exposed time
divided by the total time. For the TERP insertion on TERP
architecture (TT), the table additionally shows the number
of conditional attach/detach per second (Cond. freq.), the
percentage of conditional attaches that are lowered to thread
permission changes (Silent), average TEW size, and the
thread exposure rate (TER). ER and TER are calculated by
dividing the sum of all EWs and TEWs by the total execution
time.

As Table III shows, MM’s EWs vary widely; the gap
between average and maximum EWs is large, indicating that
MERR is unable to achieve stable EW values. In contrast,
TERP’s automatic attach/detach insertion and window com-
bining achieve stable EW values close to the target of 40us.
Furthermore, thanks to the new TEW concept introduced by
TERP, the average TEW ranges from 0.7 to 1.5us, below the
2us target. The result is much stronger security protection in
TERP, where protection is provided by TEW of less than 2us
instead of the much higher EWs in MERR. Overall, TERP
reduces exposure window size by 92% (14.5us to 1.2us) and
exposure rate by 86% (24.5% to 3.4%).

Figure 9 shows the execution time overheads of MM,
TM, and TT over the unprotected executions. The overhead
is broken down into those from attach and detach system
calls, re-randomization (Rand), execution of conditional at-
tach/detach instructions (Cond) and others (e.g., permission
matrix). The figure shows that for the 40us EW target,
TERP’s stronger security protection does not result in a
performance penalty; in fact TERP reduces execution time
overheads by 70% over MERR (20% to 6%). Table III shows
why TERP is so effective: the Silent column shows that
nearly 9 out of 10 system calls are eliminated due to the
conditional attach/detach. The overheads of TM is actually
50% higher than MM, indicating that without TERP archi-
tecture, managing thread exposure windows adds substantial
overheads.

Table III
WHISPER RESULTS WITH TARGET EW AS 40US

(EW: exposure window size; ER: Time(exposed)/Time(all);
TEW & TER: thread-level EW & ER)

Prog. MERR (MM) TERP (TT)
EW (us) ER Silent EW (us) ER TEW TER
avg/max (%) (%) avg/max (%) (us) (%)

Echo 17.3/33.5 14.1 90.4 39.2/40.0 25.1 1.5 3.3
YCSB 13.1/38.1 28.1 87.3 39.4/40.0 66.8 0.9 5.6
TPCC 11.2/32.5 31.1 92.5 39.7/40.0 77.2 0.7 2.3
ctree 16.3/39.4 22.2 80.1 38.9/40.0 33.9 1.8 4.2
hash 19.7/37.2 19.2 91.2 39.5/40.0 34.7 0.9 5.2
Redis 8.1/25.1 32.5 91.1 39.5/40.0 81.7 1.1 3.3

Avg. 14.5/34.3 24.5 88.8 39.4/40.0 53.2 1.2 3.4

MM (40us)

TT
40us

80us

160us

TM (40us)

Figure 9. Overhead on WHISPER with different EWs and 2us TEW

Table IV
SPEC RESULTS ON 40US EW (AVG OVER ALL PMOS).

Prog. # of MERR (MM) TERP (TT)
PMOs EW(us) ER Silent EW(us) ER TEW TER

avg/max (%) (%) avg/max (%) (us) (%)

mcf 4 4.5/25.1 12.9 97.2 39.6/40.0 27.5 0.7 4.9
lbm 2 1.1/17.1 49.6 98.7 39.7/40.0 67.5 0.5 14.9
imag. 3 3.4/28.6 28.4 96.7 39.7/40.0 33.5 0.9 11.2
nab 3 2.4/18.9 37.1 96.2 39.9/40.0 45.3 1.1 17.3
xz 6 10.4/37.5 8.1 95.2 39.8/40.0 16.7 1.9 1.8

Avg. 3.6 4.4/25.4 27.2 96.8 39.7/40.0 38.1 1.02 10.0

MM (40us)

TT

40us

80us

160us

TM (2us)

Figure 10. Single-thread multi-PMO execution time overheads for SPEC.

C. Multi-PMO, Single and Multi-Thread Results on SPEC

Multi-PMO single-thread results for SPEC on 40us EW
are shown in Table IV, and wall-clock execution time
overheads for 40us, 80us, and 160us EWs are shown in Fig-
ure 10. The values are averaged over all PMOs. Compared
to WHISPER, SPEC benchmarks have multiple PMOs (last

column) and PMO accesses make up for a large fraction of
total accesses (vs. a small fraction in WHISPER). Hence,
the figure shows more than 300% overheads when all attach
and detach are performed through system calls in the TM.
Our optimizations turn 96.8% attach and detach silent, hence
reducing the overheads to only 14.8% for 40us EW, and
7.6% for 160us EW, representing more than an order of
magnitude reduction. Compared with MERR (MM), our
whole design is able to merge closely-spaced attach/detach
sessions and introduce TEW to further augment security
while lowering the overheads from 156.3% to 14.8%. Due
to the much higher fraction of PMO accesses, the over-
heads from the execution of conditional instructions and
permission matrix checking are higher with SPEC. However,
for most benchmarks, performance overheads are not much
affected by the number of PMOs, because typically only
1 or 2 PMOs are actively used at a given time. 619.lbm
is an exception as it actively uses two PMOs during most
of its execution, leading to the highest overheads among the
benchmarks. In terms of security, the higher the PMO count,
the lower the exposure rates, since a program uses different
PMOs in different computation stages. For example, 657.xz,
which has the highest PMO count (6), enjoys the lowest
exposure rate (16.7%).

40us

80us

160us

O
ve

rh
ea

d

+Cond.
Basic semantics

+CB

Figure 11. 4-thread SPEC results over different EWs.

Benefits Breakdown. The multi-PMO and multi-threaded
SPEC (4 threads) results for TERP and each optimization
are shown in Figure 11. The ”basic semantic” bars show
the overhead of TERP when it uses the basic semantics in
MERR; ”+Cond” add the conditional instruction optimiza-
tion only, and ”+CB” adds the circular buffer optimization.
The basic semantic incurs very high overheads, because with
it, at most one thread can attach a PMO. If other threads ex-
ecute the attach() on an already-attached PMO, they need to
wait until this PMO is detached. Using conditional instruc-
tion supports EW-Conscious semantics to allow multiple
threads to use a PMO simultaneously. Circular buffer further
performs window combining to reduce overheads. Both
optimizations reduce the overhead significantly. Compared

Table V
QUANTITATIVE COMPARISON

MERR (40usEW) TERP (40usEW,2usTEW)
Success Probability (%)

Each Attack Time x us 1us 0.1us x us 1us 0.1us
Stack Buffer Overflow [47]

0.015/x 0.015 0.15 0.0005/x 0.0005 0.005Heap Overflow [48], [49]
Format String [50], [51]
Integer Overflow [52]

to the single-thread case, the overhead of randomization is
somewhat higher due to the overhead from suspending all
threads when TLBs are invalidated.

D. Security Analysis and Case Study

TERP introduces three possible PMO data states for
a thread: 1) detached, 2) attached without thread access
permission, and 3) attached with thread permission. In the
detached state, even attacks that exploit flaws in virtual
memory implementation cannot succeed (e.g. Spectre [44],
[45], Meltdown [46]) due to non-existent mapping. In the
second and the third states, through short TEWs and ran-
domization, TERP provides probabilistic security protection
against memory disclosure and corruption on PMOs.

To provide quantitative analysis of TERP and MERR, we
follow the effectiveness analysis [8], [43] of randomization
and each attack time. We define the success of this attack
as corrupting one value in the PMO either directly (e.g.,
through format string) or through corrupting local pointers
that point to the PMO (e.g., through stack buffer overflow).
Each attack time is represented as x, which equals 1us [42],
[43] or 0.1us in our experiments.

The quantitative comparison between MERR and TERP
for 1GB PMO is shown in Table V. Assuming each attack
time is x us, during a 40us EW, the attacker can probe 40/x
position out of 18-bit (1GB PMO) entropy. The probability
of success is therefore (0.015/x)% in MERR. In contrast,
with thread-level protection, during an EW, the malicious
thread only has the permission to access this PMO during
a small fraction (3.4% in WHISPER) of an EW. The
probability of success is therefore (0.0005/x)% in TERP,
which is 30× smaller than MERR. Meanwhile, each attack
time must be smaller than the TEW (about 2us in TERP) as
it needs the permission to the PMO during the attack.

To provide deeper insights into TERP security strength,
we discuss it in the context of an important class of attacks:
data-only attacks. The rationale for this is that while many
other attacks focus on overwriting pointers, data-only attacks
work by overwriting some local variables to reuse the victim
program to perform malicious computation with respect to
the control-flow graphs. Figure 12 shows an example of
data-only attack from [9]: part (a) shows a vulnerable code
section from an FTP server while part (b) shows an example
attack goal. The code in part (a) processes network requests
based on message types, truncates the "STREAM" (line 6),

maintains total received bytes (line 10) and throttles user
requests to a maximum limit (line 3). Let us assume there
is a buffer overflow vulnerability in function readData
(line 4) which fails to check the bounds of buf. The buffer
overflow vulnerability allows the attackers to control the
values of all local variables.

1 struct server{int *cur_max, total, typ;}*srv; int *size, *type;
2 int cnt=MAX; char buf[MAXLEN]; size = &buf[8]; type = &buf[12];
3 while (cnt—-) {
4 readData(socked, but); //buffer overflow
5 if(*type == NONE) break;
6 if(*type == "STREAM") //condition
7 *size = *(srv->cur_max); //dereference
8 else {
9 srv->typ = *type; //assignment
10 srv->total += *size; //addition
11 }
12 }

1 struct Obj{struct Obj *next; unsigned int prop;}
2 for(; list != NULL; list=list->next)
3 list->prop += value;

�D��9XOQHUDEOH�)73�VHUYHU�FRGH

�E��7KH�$WWDFN�JRDO��,QFUHDVH�WKH�WDUJHW�OLQNHG�OLVW�YDOXH�E\�D�JLYHQ�YDOXH

Overflow

type<-&list
size<-&value
srv<-&srv - 8

Odd
Rounds

if(*type==NONE) break;
 srv->typ = *type;
 srv->total += *size;

Executed Instr.

if(list==NULL) break;
srv=list;
list->prop+= value;

Simulated Instr.

type<- &STREAM
size<-&list
size<-&list

Even
Rounds

if(*type==NONE) break;
 if(*type == STREAM)
 *size = *(srv->cur_max);

if(list==NULL) break;
if(list==STREAM)
 list=list->next;

�F��6LPXODWH�WKH�DWWDFN�JRDO�E\�FRUUXSWLQJ�ORFDO�YDULDEOHV�

Figure 12. Data-only Attack Example [9]

Suppose that the attack goal is to execute the code in
Figure 12 (b) which increases a target linked list content by
a given value. The underlined code in part (a) achieves this
goal by corrupting local variables. Consider the following
operations in the program. In line 9 is an assignment
operation on two memory locations by two local variables
(srv and type), which are under the control of attackers.
Similarly, line 7 has a controllable dereference operation
while line 10 has a controllable addition operation. These
individual operations in the program are data-only gadgets.
By creating attacker-controlled inputs and chaining them in
a sequence, a meaningful computation can be executed. The
loop in line 3 allows chaining and dispatching gadgets in an
infinite sequence, since the loop condition variable is also
controllable. Such loops are called gadget dispatchers.

Figure 12 (c) shows that by corrupting local per round
(loop iteration), the code performs linked list node addi-
tion operation in odd rounds and performs pointer moving
forward operation in even rounds. The attacker obtains the
fine-grained control; the attack goal is achieved.

Through TEW and timely randomization, TERP mitigates
data disclosure and corruptions on PMOs from this kind
of attacks. As in the example, the vulnerable code needs
to have access permission to the sensitive data list and
obtain the address of this sensitive data to perform attacks.
Isolation techniques allow programmers to only open per-
mission before accessing sensitive data and close permission

after accessing, reducing the attack surface. PMO layout
randomization hinders the attackers by requiring extra time
in inferring the target memory address. Data-only attacks
also need (or at least prefer) the target address to remain
the same in all rounds. Otherwise, deployed corruption of
this round cannot perform computation or link the previous
round and the next round.

Table VI
SECURITY ANALYSIS OF DIFFERENT ATTACK SCENARIOS.

Relationship between gadgets and attach-detach pairs
Capability
of attacks No overlap Gadgets within

an attach-detach pair
Gadgets include
an attach-detach pair

One arbitrary
read or write

Prevented by
the permission

Prevent 96.6%
gadgets in
WHISPER
Prevent 89.98%
gadgets in
SPEC

Hindered by EW and
address randomization
1) Interactive data-only
attacks are impossible.
2) Non-interactive
data-only attacks need
complicated mechanisms.
3) State-of-art address
probing: 0.01% chance
of finding the address.

Same as the left

An infinite
loop that
includes
several
arbitrary
reads
or writes

Hindered by EW and
address randomization

1) Accumulated
probability.
2) Each attack
session is limited
to EW size.

Table VI analyzes several kinds of attack scenarios. We
categorize the relationship between gadgets and attach-
detach pairs into three cases. To be more specific, in
Figure 12 in Section VII-D, the three cases correspond to
the three relationships between the vulnerable code and the
attach-detach pairs of the sensitive data list. The partial
overlap case correspond to the scenario, ”gadgets within an
attach-detach pair”. In this scenario, there are two subcases
depending on whether this arbitrary read/write gadget can
happen in an infinite loop corrupted by attackers. For both
subcases, our protection can disarm about 96.6% gadgets in
WHISPER and 89.98% gadgets in SPEC by limiting gadgets
capability. To see that, first note that only code regions with
thread permission are able to access a PMO. Gadgets outside
those regions cannot be used to perform read/write to any
PMO. For the remaining gadgets within attach-detach pairs,
they have the permission to access one PMO. However, data-
only attacks require finding the target PMO virtual address
within a 40us window, which is difficult to achieve. For
interactive data-only attacks, network latencies (ms level)
are much larger than EW (40us). So, a probing result
would become useless when attackers obtain it, since the
victim program would have already gotten out of the gadget
and the PMO address re-randomized. Non-interactive data-
only attacks need complicated steps to handle the probing
results. If attackers use the state-of-art address probing
method [42], they have only 0.01% probability to find the
PMO address during an EW. For gadgets that include an
attach-detach pair used by an infinite loop, attackers may
accumulate the chances to successfully launch the attack.
However, the attackers still need complicated steps to handle
probing results and subsequent attack steps within an EW
window. Therefore, the success probability of these attacks

is very low. Comparatively, MERR keeps 24.5% gadgets in
WHISPER and 27.2% gadgets in SPEC and gives less stable
randomization frequencies, incurring much larger overhead
than TERP does.

VIII. RELATED WORK

The possibility of data-only attacks had been identified
before [53], [54]. Hu et al. [9] introduced a tool to chain or
stitch together data-flows to generate data-oriented attacks
on Linux and Windows binaries. They further showed the
Turing-complete property of such attacks and introduced
Data-Oriented Programming (DOP). Ispoglou et al. [26] ex-
tended DOP to Block-Oriented Programming (BOP), which
would automatically locate dispatching basic blocks to con-
struct a successful attack. Restricting access reduces risk to
DOP/BOP, which is the principle that TERP uses to protect
PMOs.

Our work is the first one to address the vulnerabilities of
PMOs to data corruption through a novel TERP framework,
and define semantics of protection constructs. For traditional
volatile memory, many security mechanisms were proposed
to improve code and data security, including software-fault
isolation (SFI) [55], [56], ISboxing [57], heterogeneous
isolated execution [58], probe step detection [59], data
Shield [60], virtualization to keep sensitive information in
disjoint memory [14]–[16], [61].

Randomization techniques have long been used to ob-
fuscate address space layout. These include ASLR [62],
Enhanced ASLR [43], TASR [30] and Runtime ASLR [63].
Shuffler [64] and Morpheus [65] augment ASLR by adding
encryption. There is broad recognition that re-randomization
is required because memory disclosure can be used to
defeat randomization over time. Such works are orthogonal
to TERP and can be used in combination with TERP to
improve general security.

Several studies proposed to maintain crash consistency
and improve the performance of encryption in PM [66]–
[68]. Some work proposed faster Merkle tree mechanisms to
verify the integrity of PM [69]–[72]. These studies assume a
different threat model where system software is not trustable
and physical attacks are possible, but the programs are
trusted. In contrast, we are more concerned about attacks
that arise from memory safety due to vulnerabilities in
programs. Hardware-based memory protection key (MPK)
virtualization [21] has the same threat model as our work
and proposes to use intra-process isolation to improve PM
security. This paper only focuses on the hardware design part
but does not address non-trivial programming challenges
to use intra-process isolation in applications. Our work
could guide future MPK programming support to ease the
programming burden.

IX. CONCLUSION

In this paper, we have shown that the PMO model suffers
from persistent corruption vulnerabilities, and requires a
protection framework that can systematically reduce PMO
exposure to attacks relying on memory corruption. We dis-
cussed our proposal called TERP, which provides semantics
of attach/detach that is secure and composable in terms of
function and multi-threaded aspects. We then presented a
novel compiler-architecture design that addressed key TERP
challenges. The compiler allows the automatic insertion of
TERP constructs into code, while the architecture support
reduces performance overheads associated with frequent
attach and detach calls. Our experiments on both sequential
and parallel programs demonstrate TERP’s effectiveness in
achieving security at low overheads.

ACKNOWLEDGMENT

We thank all the anonymous reviewers whose feedback
is helpful for improving the final version of the paper. This
material is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. 1900724, 2106629,
CCF-1525609, CNS-1717425, CCF-1703487, and Office of
Naval Research (ONR) under grant No. N00014-20-1-2750.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF or ONR.

REFERENCES

[1] H. Akinaga and H. Shima, “Resistive random access memory
(reram) based on metal oxides,” Proceedings of the IEEE,
vol. 98, no. 12, pp. 2237–2251, 2010.

[2] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda,
Y. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro et al., “2mb
spin-transfer torque ram (spram) with bit-by-bit bidirectional
current write and parallelizing-direction current read,” in 2007
IEEE International Solid-State Circuits Conference. Digest of
Technical Papers. IEEE, 2007, pp. 480–617.

[3] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu, “Evaluating stt-ram as an energy-efficient main
memory alternative,” in 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2013, pp. 256–267.

[4] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger, “Phase-change technology and the
future of main memory,” IEEE micro, vol. 30, no. 1, pp. 143–
143, 2010.

[5] Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving security
of persistent memory objects via efficient memory exposure
reduction and randomization,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp.
987–1000.

[6] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming: On
the difficulty of preventing code reuse attacks in c++ appli-
cations,” in 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015, pp. 745–762.

[7] H. Shacham et al., “The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86).” in
ACM conference on Computer and communications security.
New York,, 2007, pp. 552–561.

[8] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi, “Just-in-time code reuse: On the effective-
ness of fine-grained address space layout randomization,” in
2013 IEEE Symposium on Security and Privacy. IEEE, 2013,
pp. 574–588.

[9] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, “Data-oriented programming: On the expressiveness
of non-control data attacks,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 969–986.

[10] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka,
B. Laurie et al., “Cheri: A hybrid capability-system archi-
tecture for scalable software compartmentalization,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
20–37.

[11] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap
memory safety,” in 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 1153–1166.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory
safety for c,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 2009, pp. 245–258.

[13] M. Castro, M. Costa, and T. Harris, “Securing software
by enforcing data-flow integrity,” in Proceedings of the 7th
symposium on Operating systems design and implementation.
USENIX Association, 2006, pp. 147–160.

[14] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwart-
ing memory disclosure with efficient hypervisor-enforced
intra-domain isolation,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2015, pp. 1607–1619.

[15] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athana-
sopoulos, “No need to hide: Protecting safe regions on com-
modity hardware,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 437–452.

[16] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and
M. Polychronakis, “xmp: Selective memory protection for
kernel and user space,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 584–598.

[17] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu, “A practical
approach for adaptive data structure layout randomization,”
in European Symposium on Research in Computer Security.
Springer, 2015, pp. 69–89.

[18] Y. Wang, Q. Li, Z. Chen, P. Zhang, and G. Zhang,
“Shapeshifter: Intelligence-driven data plane randomization
resilient to data-oriented programming attacks,” Computers
& Security, vol. 89, p. 101679, 2020.

[19] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand:
Practical mitigation of data-only attacks against page tables.”
in NDSS, 2017.

[20] Intel, “Intel 64 and ia-32 architectures software devel-
oper’s manual.” https://software.intel.com/en-us/articles/intel-
sdm, online; accessed August, 2020.

[21] Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Hardware-based
domain virtualization for intra-process isolation of persistent
memory objects,” in 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 680–692.

[22] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “Nv-heaps: making persis-
tent objects fast and safe with next-generation, non-volatile
memories,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 1, pp. 105–118, 2011.

[23] A. R. Intel, “Persistent memory programming,” http://pmem.
io/.

[24] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware
supported persistent object address translation,” in Proceed-
ings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017, pp. 800–812.

[25] C. Ye, Y. Xu, X. Shen, X. Liao, H. Jin, and Y. Solihin,
“Supporting legacy libraries on non-volatile memory: a user-
transparent approach,” in 2021 ACM/IEEE 48th Annual In-
ternational Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 443–455.

[26] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block
oriented programming: Automating data-only attacks,” in
Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, 2018, pp. 1868–1882.

[27] M. Abadi and M. Budiu, “lfar erlingsson, and j. ligatti.
control-flow integrity,” in Proceedings of ACM Conference
on Computer and Communications Security (CCS), 2005.

[28] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng,
“Ropecker: A generic and practical approach for defending
against rop attack,” 2014.

[29] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song, “Code-pointer integrity,” in 11th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 14), 2014, pp. 147–163.

[30] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H. Okhravi, “Timely rerandomization for mitigating memory
disclosures,” in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security. ACM,
2015, pp. 268–279.

[31] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.
Sadeghi, S. Brunthaler, and M. Franz, “Readactor: Practical
code randomization resilient to memory disclosure,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
763–780.

[32] S. Andersen and V. Abella, “Data execution prevention.
changes to functionality in microsoft windows xp service pack
2, part 3: Memory protection technologies,” 2004.

[33] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,
M. Sammler, P. Druschel, and D. Garg, “{ERIM}: Secure,
efficient in-process isolation with protection keys ({MPK}),”
in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 1221–1238.

[34] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“Cacti 5.1,” Technical Report HPL-2008-20, HP Labs, Tech.
Rep., 2008.

[35] “Nehalem,” https://en.wikichip.org/wiki/intel/
microarchitectures/nehalem (client).

[36] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos,
and K. Keeton, “An analysis of persistent memory use with
whisper,” in ACM SIGARCH Computer Architecture News,
vol. 45, no. 1. ACM, 2017, pp. 135–148.

[37] Intel, “Spec cpu 2017.” https://www.spec.org/cpu2017/, on-
line; accessed August, 2020.

[38] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Explor-
ing the level of abstraction for scalable and accurate parallel
multi-core simulations,” in International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC), Nov. 2011, pp. 52:1–52:12.

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://pmem.io/
http://pmem.io/
https://en.wikichip.org/wiki/intel/microarchitectures/nehalem_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/nehalem_(client)
https://www.spec.org/cpu2017/

[39] LLVM, “Writing an llvm pass.” https://llvm.org/docs/
WritingAnLLVMPass.html, online; accessed August, 2020.

[40] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in International
Symposium on Code Generation and Optimization, 2004.
CGO 2004. IEEE, 2004, pp. 75–86.

[41] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing
high-performance memory allocators,” ACM SIGPLAN No-
tices, vol. 36, no. 5, pp. 114–124, 2001.

[42] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address
space layout randomization with intel tsx,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 380–392.

[43] C. Giuffrida, A. Kuijsten, and A. Tanenbaum, “Enhanced
operating system security through efficient and fine-grained
address space randomization,” in USENIX Security Sympo-
sium, 2012.

[44] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” arXiv
preprint arXiv:1801.01203, 2018.

[45] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the re-
turn stack buffer,” in 12th {USENIX} Workshop on Offensive
Technologies ({WOOT} 18), 2018.

[46] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin et al.,
“Meltdown: Reading kernel memory from user space,” in
27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 973–990.

[47] A. One, “Smashing the stack for fun and profit,” Phrack
magazine, vol. 7, no. 49, pp. 14–16, 1996.

[48] C.-. 2019, “Cwe-122: Heap-based buffer overflow,” https://
cwe.mitre.org/data/definitions/122.html.

[49] Y. Huang, “Heap overflows and double-free attacks,” Re-
trieved April, vol. 6, p. 2018, 2016.

[50] O. 2015., “Format string attack.” https://www.owasp.org/
index.php/Format string attack.

[51] K.-S. Lhee and S. J. Chapin, “Buffer overflow and format
string overflow vulnerabilities,” Software: practice and expe-
rience, vol. 33, no. 5, pp. 423–460, 2003.

[52] D. Ahmad, “The rising threat of vulnerabilities due to integer
errors,” IEEE Security & Privacy, vol. 1, no. 4, pp. 77–82,
2003.

[53] W. D. Young and J. McHugh, “Coding for a believable
specification to implementation mapping,” in 1987 IEEE
Symposium on Security and Privacy. IEEE, 1987, pp. 140–
140.

[54] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats.” in USENIX Security
Symposium, vol. 5, 2005.

[55] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee,
K. Schimpf, and B. Chen, “Adapting software fault isolation
to contemporary cpu architectures,” 2010.

[56] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in ACM SIGOPS
Operating Systems Review, vol. 27, no. 5. ACM, 1994, pp.
203–216.

[57] T. H. Dang, P. Maniatis, and D. Wagner, “The performance
cost of shadow stacks and stack canaries,” in Proceedings
of the 10th ACM Symposium on Information, Computer and
Communications Security. ACM, 2015, pp. 555–566.

[58] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh,
“Heterogeneous isolated execution for commodity gpus,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 455–468.

[59] K. Bhat, E. Van Der Kouwe, H. Bos, and C. Giuffrida,
“Probeguard: Mitigating probing attacks through reactive
program transformations,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM,
2019, pp. 545–558.

[60] S. A. Carr and M. Payer, “Datashield: Configurable data
confidentiality and integrity,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications
Security, 2017, pp. 193–204.

[61] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang,
Y. Lai, Y. Kang, and M. Yang, “Seimi: Efficient and secure
smap-enabled intra-process memory isolation,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp.
592–607.

[62] P. T. 2003, “Pax address space layout randomization (aslr).”
http://pax.grsecurity.net/docs/aslr.txt.

[63] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to make
aslr win the clone wars: Runtime re-randomization.” in NDSS,
2016.

[64] D. Williams-King, G. Gobieski, K. Williams-King, J. P.
Blake, X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang,
and W. Aiello, “Shuffler: Fast and deployable continuous
code re-randomization,” in 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16),
2016, pp. 367–382.

[65] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F.
Yitbarek, M. T. Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco
et al., “Morpheus: A vulnerability-tolerant secure architecture
based on ensembles of moving target defenses with churn,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 469–484.

[66] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in
encrypted non-volatile main memory systems,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 310–323.

https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://www.owasp.org/index.php/Format_string_attack
https://www.owasp.org/index.php/Format_string_attack
http://pax.grsecurity.net/docs/aslr.txt

[67] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce:
Write-efficient encryption for non-volatile memories,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 1, pp.
33–44, 2015.

[68] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 479–492.

[69] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair,
“Triad-nvm: Persistency for integrity-protected and encrypted
non-volatile memories,” in Proceedings of the 46th Interna-
tional Symposium on Computer Architecture, 2019, pp. 104–
115.

[70] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead
and recovery time for secure non-volatile memories,” in Pro-
ceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 157–168.

[71] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Streamlining
integrity tree updates for secure persistent non-volatile mem-
ory,” arXiv preprint arXiv:2003.04693, 2020.

[72] A. Freij, H. Zhou, and Y. Solihin, “Bonsai merkle forests:
Efficiently achieving crash consistency in secure persistent
memory,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2021, pp. 1227–
1240.

	Introduction
	Background
	TERP Concepts, Constructs, and Relations with Security
	Definitions
	Connections with Security

	Adoption Challenge I: Semantics
	Why isn't the basic semantics sufficient?
	Other Considered Alternatives
	EW-Conscious Semantics

	Adoption Challenge II: Ease and Efficiency
	Automatic Constructs Insertion
	Efficiency via Architecture Support

	Evaluation Methodology
	Experiment Results
	Exposure Window Size Selection
	Single-PMO and Single-Thread Results on WHISPER
	Multi-PMO, Single and Multi-Thread Results on SPEC
	Security Analysis and Case Study

	Related Work
	Conclusion
	References

