
2021 IEEE International Symposium on High Performance Computer Architecture (HPCA)

Hardware-Based Address-Centric Acceleration of
Key-Value Store

Chencheng Ye†, Yuanchao Xu‡, Xipeng Shen‡, Xiaofei Liao†, Hai Jin†, Yan Solihin§
† National Engineering Research Center for Big Data Technology and System/Services Computing Technology

and System Lab/Cluster and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China
‡ North Carolina State University, Raleigh, North Carolina, USA
§ Computer Science, University of Central Florida, Florida, USA

{yecc,xfliao,hjin}@hust.edu.cn, {yxu47,xshen5}@ncsu.edu, Yan.Solihin@ucf.edu

Abstract—Efficiently retrieving data is essential for key-value
store applications. A major part of the retrieving time is on
data addressing, that is, finding the location of the value in
memory that corresponds to a key. This paper introduces an
address-centric approach to speed up the addressing by creating
a shortcut for the translation of a key to the physical address
of the value. The new technique is materialized with a novel
in-memory table, STLT, a virtual-physical address buffer, and
two new instructions. It creates a fast path for data addressing
and meanwhile opens up opportunities for the use of simpler and
faster hash tables to strike a better tradeoff between hashing con-
flicts and hashing overhead. Together, the new technique brings
up to 1.4× speedups on key-value store application Redis and up
to 13× speedups on some widely used indexing data structures,
consistently outperforming prior solutions significantly.

I. INTRODUCTION

Key-value store as an infrastructure is essential for cloud
computing as it provides a high performance and scalable
solution to materialize a simple yet flexible data model [1], [2],
[3], [4], [5], [6], [7]. Cloud service providers have developed
Redis [8], Memcached [9], and their variants for many uses
in production environments, including queues, session store,
content cache, and so on.

As the most critical performance deciding factor for key-
value store, maximizing the speed of data retrieval for a given
key remains the most pressing objective, essential for measures
from cost reduction to response time minimization, overall
throughput maximization, and so on.

Hardware caching for key-value store is a promising ap-
proach that has drawn much recent interest [10], [11]. It
is prompted by the observations of non-uniform access fre-
quencies or locality of items in key-value store [12], [13],
[14], [15], [16], [17]. The essential ideas behind the existing
proposals (e.g., HTA [10] and SDC [11]) are to build a key-
indexed hardware cache to store frequently used or recently
accessed values. We call them value-centric approach for their
focus on caching values.

Although these proposals have demonstrated promising per-
formance, they are subject to two major limitations. First, the
record size (key and value) must not exceed a cache line [10],
[11]. This limitation hinders the applications of these proposals
on many practical uses where some records may exceed a

single cache line. Studies [16], [14], [13], [17] have reported
that the average value sizes of production workloads vary from
20 bytes to 800 bytes. Second, the main reliance on hardware
cache creates the tension between the capacity and cost, and
hence the limit on the ultimate benefits. As prior studies
show [15], the data volume for key-value stores suggests that
the cache needs to be much larger than what hardware can
afford to preserve a sufficient hit rate.

This work proposes an address-centric approach, a new
way to tackle the efficiency problem in key-value store.
Two fundamental features of this new approach set it apart
from the previous hardware-based proposals: (1) It caches
virtual-physical addresses rather than values of records; (2)
It uses a combination of off-chip table and on-chip buffer
for caching. The two features address both limitations of
the previous value-centric proposals. Unlike values, addresses
have small fixed size; caching them rather than values makes
this new approach avoid the limit on the size of a record. The
combination with off-chip tables mitigates the capacity-cost
tension faced by value-centric methods.

The address-centric approach emphasizes the reduction of
addressing overhead—that is, the time to find the physical
address of the correct record.

In a typical key-value store, an access to a record goes
through some kind of indexing and data structure traversal,
a process that consists of multiple address translations. As
Figure 1(left) shows, before the record associated with a key
is actually accessed, a hash function needs to translate the key
to an integer, an indexing data structure then needs to translate
the integer to the virtual address of the target record, and
then the system translates the virtual address to the physical
address of the record through the Translation Lookup Buffer
(TLB) or page table walk. The latter two steps are repeated
for each memory access needed to get to the target record.
As Figure 1(right) shows, the translations and address finding
incur excessive overhead, over 50% of the overall time of a
popular key-value store application, Redis.

To give an intuition of the address-centric approach, Fig-
ure 2 shows a simplified design. The virtual-physical addresses
of recently accessed records are stored in system translation
lookaside table (STLT), an off-chip table indexed by keys

1

key

integer
hash function

virtual address of a record

indexing data structure

physical address of a record
TLB/PageTableWalk

key comparision resolve
key collision

Re
co

rd
lo

ad
/s

to
re

Re
co

rd
 fi

nd
in

g

28.1%

23.2%

14.5%

21.5%

6.5% Others
Memory Allocation/Free
Request Input/Output
Value Copy
Linked List Traverse
Key Hash and Compare

Address translation
 and finding
 51.3%

0%

20%

40%

60%

80%

100%

Fig. 1: Translations involved in an access to a record in
key-value store (left). Breakdown of execution time of Re-
dis (right). The results were collected using 10 million distinct
keys and 100 million GET operations generated by YCSB.
Redis indexes records with a hash table. Linux perf is used
for measurement. To emulate the use of Redis in cloud centers
that equip with fast interconnection, such as RDMA [18], [19],
we use Unix domain socket as the network interface and Redis
pipeline to batch requests.

whose size is not subject to area limits as an on-chip cache
does. At the time of retrieving a record from a key, the runtime
puts the corresponding entry in STLT into system translation
buffer (STB), an on-chip fully associative cache with FIFO
replacement. When loading the record, the runtime can then
get the physical address of the record from either TLB or SLB
without time-consuming page table walks. Besides saving the
costly addressing overhead, this method also enables the use
of much cheaper hashing functions on keys (detailed below).
Both benefits could lead to large time savings.

key integer

…

virtual
addr

…

physical
addr STB TLB

Coreshash

indexing

Fig. 2: Illustration of the basic idea of the address-centric
approach

Putting this idea to work however faces several challenges:
(1) how to design the STLT and STB to fit the needs and
attributes of key-value store; (2) how to keep the coherence
among the copies of record addresses in STLT, STB, TLB,
and page tables with minimum time overhead; (3) how to
keep consistency if records are moved; (4) how to deal with
an application having multiple key-value store tables; (5) how
to ensure security regarding both common flooding attacks1

to key-value stores and the exposure of physical addresses of
records. This paper presents the full design of the address-
centric approach and how it addresses those challenges. The
design leverages a statistical counter enhanced set-associative
STLT and a software-hardware collaborative approach to re-
solve key queries, such that it can support keys and values
of arbitrary sizes while managing physical address outside
page tables in a programmer transparent way. The design
employs hierarchical addressing translation and dynamic STLT

1Malicious keys made to share the same hashed value, causing many hash
collisions [20].

switch-off to enable the use of cheaper hash functions without
compromising the security. It also removes STLT updating
from critical path of page swapping or migrating via lazy
coherence between STLT and page table. The design handles
a set of implications from moved records to multiple tables
via a set of measures.

It is worth mentioning that before this work, the idea of
hardware-based caching addresses has been mentioned for
key-value stores but has never been systematically explored.
The SDC paper [11] for instance uses one sentence to men-
tion the possibility of caching addresses rather than values;
SLB [21] employs a software cache for record addresses,
but without exploring architectural support, complexities to
coherence, security implications, OS support, implications to
hashing function designs, or treatments to multiple tables or
record movements. To the best of our knowledge, this work
is the first work that proposes the concept of address-centric
approach, provides a full architectural implementation with OS
and other support, and explores the opportunities on the new
tradeoffs between hashing complexities and overhead.

Qualitatively, the new approach addresses the applicability
limitations of the state-of-the-art hardware caching methods
in record size. Quantitatively, the new approach brings up to
1.4× speedups on key-value store application Redis and up to
13× speedups on some widely used indexing data structures,
and consistently outperforms prior software caching method
SLB by 23–73%.

II. BACKGROUND

Finding a record in a key-value store involves many steps
including hashing, traversal, and translations. First, a key is
hashed to an integer value that is used to index a hash
table, and then the hash table is looked up to obtain the
virtual address of a record containing the key-value pair. Since
multiple keys may map to the same hash table entry (i.e., col-
lide), collision handling policy is needed. Figure 3 illustrates
handling collision by chaining, where each hash table entry
points to a linked list that can grow to store records that collide
at the entry. In the example, records for keys user0001 and
user0004 are chained in a linked list. To look up the record
for user0004, three memory accesses are conducted: one to
read the hash entry, another to read the first node in the list,
and finally to read the user0004 record. Each of these memory
accesses also involves a translation from virtual address to
physical address.

Furthermore, hash table based key-value stores are vul-
nerable to a type of security attacks called hash-flooding
denial-of-service attacks [20]. An attacker, based on analyzing
the hash function, creates many colliding keys to create a
long-linked list that is slow to look up. To mitigate these
attacks, attack-proof hash functions, such as SipHash [20], are
used. SipHash is the default hash function in Redis, Python,
Rust, and many other software packages or languages. It
provides better security at the expense of performance. Key-
value stores use other complicated hash functions for similar
purposes, for example, MongoDB uses MD5, and Aerospike

2

user0001

user0002

user0003

user0004

2

1

7

5

0

4

3

6

key hash
table

hash
function records

Sydney, Australiauser0001

São Paulo, Braziluser0002

Xian, Chinauser0003

Marsuser0004

Fig. 3: An example of a chained hash table

uses RIPEMD (a family of cryptographic hash functions) for
the indexing data structure.

Thus, overall, a hash table design used in key-value stores
is generally optimized for ease in handling collision and attack
resistance but was not designed for high performance common
case.

III. ADDRESS-CENTRIC DESIGN FOR ACCELERATION

This section presents the design of the address-centric
method for accelerating key-value store operations.

A. Overview

A core data structure of the address-centric design is STLT,
a table acting as a cache in kernel memory that accelerates
record lookup. It is indexed by a hash table entry index. Each
row contains the virtual address (VA) of a record and the
page table entry (PTE) associated with the virtual address.
The PTE contains the physical address (PA) of a page and
its access permission. For the example in Figure 3, to look
up record for user0004, STLT is indexed by a value “3”, and
its entry contains the VA/PA of user0004 record. Thus, given
a hash entry, STLT allows us to skip hash table (and linked
list) traversal and its associated address translations to directly
obtain the addresses of the record. Thus, STLT acts both as an
accelerator and as a cache for the key-value store. An STLT
hit reduces multiple memory accesses due to hash lookup and
traversal to just one. An STLT miss results in reverting back to
the regular hash table lookup, hence a good hit rate is essential
for performance improvement. Figure 4 the illustrates STLT
use.

Every access to the key-value store 1 hashes the key to an
integer value through a simple hash function; then the integer
is used 2 to load an STLT entry via a new loadVA instruction.
The instruction also inserts the VA-to-PA mapping into an on-
chip buffer STB. In 3 , we validate the entry by checking
whether the VA of a record is 0 (null pointer) and whether
the record matches the input key. If the record matches, it
is an STLT hit and the value of the record is found. On
an STLT miss, the access looks up the key in a traditional
manner involving the key-value store hash table 4 . The VA
of the record is also obtained. Then, an insertSTLT instruction
is executed that will insert the VA-to-PA translation into the
STLT 5 , to increase the chance of future hits to this key.

return va, load va and its PTE into STB (a
near TLB buffer introduced later)

insertSTLT regin(integer), regin(va) find page table entry (PTE) associated
with va, put integer, va and PTE into STLT

loadVA regin(integer), regout(va)

key
simple
hash

STLT

key-value
store

miss

va

hitkey

integer

getValueFast(key):
 integer = simpleHash(key)
 va = loadVA integer
 if(va450 && va89key:5key):
 return va89value
 else
 va = getValueSlow(key)
 insertSTLT integer, va
 return va89value

new instructions

1
2
3

4
5

virtual address of record

Fig. 4: Overview of STLT and pseudocode using it

STLT also provides the PA to the memory hierarchy, hereby
adding to the Translation Lookaside Buffer (TLB) reach.

Because STLT is just a cache, it does not need to handle
collision. A collision simply results in an STLT miss with
the key passed to the key-value store for a lookup. Therefore,
using an attack-resistant hash function is not critical for STLT,
allowing us to rely on a simple and fast hash function.
Hence, overall STLT improves performance in three ways: (1)
enabling the use of a fast hash function to translate key to hash
entry index, (2) allowing the retrieval of the record’s VA given
hash entry index, skipping hash and linked list traversal, and
(3) skipping page table walk by providing PA of the record,
in the event of TLB miss.

B. Hash Function

In contrast to the complex hash functions used in hash
tables that must provide hash flooding attack resistance and
avoid pathological cases of key collisions, a hash function in
STLT can be designed to be fast for the common case. For
our implementation, we use xxh3 hash function [22]. We also
considered adding hardware support for calculating a fast hash
function. A hardware hash gains performance at the expense
of flexibility.

C. STLT Design

STLT is a set-associative cache stored in kernel memory.
Since it stores not just VAs, but also PAs, it cannot be read or
written directly by the application running in the user space,
to avoid accidental overwrites. The user-level application only
has a narrowly defined interface for interacting with the STLT,
which includes loadVA instruction (to read only the VA of
an entry), and insertSTLT instruction (a hint to insert VA/PA
translation into STLT given the VA). Hardware handlers or
the OS is responsible for reading or modifying the STLT
(including looking up permission and managing PA), similar
to page table walker or the OS manages the page table.

Each row of STLT has 16 bytes composed of four compo-
nents depicted in Figure 5. The counter records the frequency

3

counter
4 bits

virtual address of record
48 bits

sub-integer
12 bits

page table entry
64 bits

64 bits

Fig. 5: A row entry of STLT.

of access to the row. The sub-integer is a few bits coming
from the hash integer associated with the row. The last two
fields contain the VA and PA of a key-value record.

STLT is dynamically sized (and resized as needed); its size
must be a power of two. A system call is required to resize the
STLT. STLT is also page aligned. STLT can be direct-mapped
or set-associative (our default design). If set-associative, it
maps an integer value of a hash table index to multiple adjacent
candidate rows in a set. Figure 6 illustrates the mapping from
a key to a set of rows. In the example, the hash function
produces a 64-bit integer value. The STLT has 210 rows and
4-way associativity, hence only 8 bits of the integer value are
needed to index a set (set number), and we can choose any
8 bits from the integer. The maximum set associativity can
be limited to avoid incurring two block accesses for a single
loadVA instruction. Due to set associativity, we need to know
which row in the set contains the desired entry, or whether any
row in the set has the desired entry. To achieve that, we could
add a full 64-8=56-bit tag to each row, but that would create
an unnecessary storage overhead. So instead, we add a 12-bit
partial tag to each row which we refer to as the sub-integer.
12 bits are chosen for the sub-integer to avoid an STLT row to
span beyond 16 bytes. If the tag matches with a 12-bit part of
the integer value produced by the hash function, it indicates
a potential hit2, and the loadVA instruction returns the VA for
the matching row. Since the tags are partial, it is possible in
rare cases to find more than one matching rows in a set. In
such a case, one matching row is randomly selected. In the
example, we chose 12 least significant bits (LSBs) for the sub-
integer and the 8-bit index is adjacent, but other choices are
possible as long as the bits chosen for sub-integer and index
do not overlap. The size of STLT is dynamic, so is the number
of sets. If the STLT is enlarged, the set index bits can grow
or shrink easily, while the sub-integer remains using the 12
LSBs.

key
hash

integer
0x0123456789A01459

8
7
6
5
4
3
2
1
0

set number sub-integer

set
0

set
1

210 rows, 4-way associative

Fig. 6: Set associativity of STLT

For the rest of this section, for simplicity, we will illustrate
loadVA and insertSTLT with a direct-mapped STLT (i.e.,
1-way associative). We discuss set-associativity support in
Section III-E.

2Software further validates if the returned VA is the correct one.

D. Hardware Support for STLT

The hardware implements instructions loadVA and insert-
STLT . Figure 4 specifies the format of two new instructions
that we introduced as the software interface to STLT, and
Figure 7 depicts the modification to the processor pipeline,
showing a new component system translation unit (STU) and
a slight modification to the memory management unit (MMU).
STU can be thought of as a specialized functional unit to
execute loadVA and insertSTLT instructions.

is
su

e Load Unit

Arithmetic
Logic Unit

Store Unit

System
Translation Unit

Memory
Management Unit

L1
 D

at
a

C
ac

he

loadva
insertstlt

Fig. 7: Modification to core architecture

For loadVA, the source operand represents the integer value
that is output of the hash function. It is executed in the STU.
The STU calculates the effective address of the STLT set
where the integer maps to, then accesses STLT by sending
a memory request to L1 data cache. STLT is cacheable, hence
the request may hit in the L1 data cache, or be forwarded to
L2 cache, and so on. STU then buffers the row in an internal
register within the unit and performs partial tag comparison to
determine STLT hit or miss. If the sub-integer partial tag in
the row matches the input integer, the STU writes the VA of
the row into the destination register of the instruction. It also
forwards the row to the MMU. The MMU treats this similar
to a TLB hit: it skips the page table walk for the VA found in
the STLT row and uses the PA found in the row.

For insertSTLT , one source operand is integer value pro-
duced by the hash function, and the other is VA of the key-
value record. Both operands are passed to the STU, which
calculates the row to be accessed according to the integer.
The STU also obtains the PA of the record through the MMU
(TLB or page table walk). Then, the appropriate STLT row is
accessed, and a new entry is inserted into the table at the row.

From the viewpoint of memory consistency ordering, a
loadVA or insertSTLT instruction is strictly ordered with
respect to another loadVA or insertSTLT only when they have
the same integer value. For example, if a preceding insertSTLT
with integer x has not performed, a loadVA is stalled until
the insertSTLT is performed. This avoids overlapping or
reordering them. A loadVA or insertSTLT is ordered w.r.t. a
regular load or store instruction executed by the application
program only when the VA of the key-value record overlaps
with the VA of a regular load or store, indicating dependence.
In other words, the dependence is not checked against the
effective address of the STLT row, but instead against the
VA contained in the matching STLT row. Finally, loadVA or
insertSTLT are executed by a single STU in hardware, hence
atomic execution of each instruction is simple to achieve. With

4

respect to cache coherence, loadVA or insertSTLT generates a
get or getX coherence request in order to get the cache line
containing the STLT row, prior to reading from or writing to
it, similar to a regular load or store instruction.

Now we will discuss the implementation of loadVA and
insertSTLT in detail.

1) loadVA Implementation: Figure 8 illustrates how loadVA
is implemented. We add the following on-chip hardware
components: (1) a set of registers CRS that keeps the base
address and the size of STLT; (2) an invalid page buffer (IPB)
containing recently invalidated page table entries (PTEs); and
(3) a translation buffer (STB) containing the VA and PTE pairs.

In Figure 8, the CPU issues loadVA with an integer, which
contains the STLT set number and the sub-integer. The STU
in the CPU calculates the effective address of the set using
CRS and the index portion of the integer and scans the set
to find a row that matches the sub-integer. The instruction
returns 0 if no match is found or continues to check the VA
against the IPB. If the VA is found in the IPB, it belongs to
a recently invalidated PTE, hence a 0 is returned. Otherwise,
the translation is valid, and the VA is returned to the CPU.

CPU

TLB

STBinvalid page
buffer

page table
walker

virtual
address

miss
physical
address

miss

CPU

STLT

CRS

addr, size

loadVA

regular data

offchip-memory

(a) loadVA (b) TLB miss resolving

vpn, pte

virtual
address0

found not found

not found

va, pte

Fig. 8: Procedures of (a) load va and (b) TLB miss resolving

As illustrated by the pseudocode in Figure 4, the program
accesses a record referred by the VA right after loadVA returns
it. Figure 8(b) elaborates the address translation for the record
access. If the memory access hits in the TLB, the TLB
returns the PA to the processor without touching the STB.
However, if the memory access misses in TLB, the hardware
looks up the VA in the STB. STB is implemented as a fully
associative cache with FIFO replacement, keeping a few most
recently used VA/PA translation. There is no eviction for
STB. If a match is found, the translation is inserted into the
TLB. Otherwise, the page table walker resolves the address
translation. The address translation applies to all memory
accesses including both record and non-record addresses. We
design the STB to be the same size as the load buffer to
avoid the case that the item inserted into STB by loadVA is
replaced before the memory access following loadVA access
the STB. Particularly, STB is composed of 32 entries in our
implementation.

As discussed earlier, one of the key performance bottlenecks
is in address translation; given a VA, it can take a long time
to get its PA through the page table. The TLB on modern
architectures is usually complicated and is in the critical path

of memory access [23]. Typically, a TLB lookup must be
completed within the time to access the activate a row in the
L1 cache and read the content of the row to the row buffer.
This is because a typical L1 cache uses virtually indexed and
physically tagged design. Hence, before L1 tag comparison,
the TLB must have produced the PA for the accessed VA.
Therefore, our design avoids any modifications to the TLB.

Instead, we design the STLT to accelerate key-value lookup
by caching address translation and skipping page table walks.
STLT keeps VA-to-PA translation information similar to a
TLB. Thus, STLT provides an alternative to the TLB to obtain
PA for a given VA that corresponds to a key-value record,
without adding translation hardware. However, one challenge
to address is the coherence between TLB, page table, and
STLT. Without a coherence scheme, VA-to-PA translation may
become out of date in the STLT if it is only modified in
the page table and TLB. However, a coherence scheme may
be expensive if it requires looking up and invalidating the
STLT entry whenever VA-to-PA translation changes. Hence,
we rely on lazy coherence scheme. Specifically, we introduce
an invalid page buffer IPB that keeps recently invalidated page
table entries (PTEs).

To manage IPB, we modify a set of Linux kernel TLB
management functions, flush_tlb_*. The operating sys-
tem always calls them before updating the page table. The
functions wrap instruction invlpg on X86 architecture and
invalidate one entry of TLB or the entire TLB. We insert three
new instructions into the functions: (1) insert VA of the page
into IPB, (2) clear the IPB, (3) check whether the IPB is full
or not. Before executing invlpg, we check the capacity of
IPB with instruction 3. If IPB is not full, the kernel function
records with a kernel-space array the virtual address associated
with the PTE to invalidate and inserts the virtual address into
IPB with instruction 1. If IPB is full, the kernel function
clears it with instruction 2 and updates STLT via searching the
page table for invalidated PTEs. The array retaining invalidated
virtual address is part of program context, such that on user
process context-switch out, the operating system clears the IPB
without updating the STLT, and on user process context-switch
in, the operating system inserts all virtual addresses in the
kernel-space array into IPB again with instruction 1. The IPB
retains up to 32 virtual addresses. It is a fully associative cache
with FIFO replacement implemented with content addressable
memory. Because page invalidation is expensive yet rare, a
small IPB is sufficient for most cases. Updating STLT is more
expensive. However, it is even rarer than page invalidation.

2) insertSTLT Implementation: insertSTLT finds the PTE
of a given VA and inserts it into the STLT. Its implementation
relies on an insertion buffer and a simplified page table
walker (SPTW). The 16-entry buffer stores outstanding stores.
Each entry is composed of an STLT row illustrated by Figure 5
and the memory address to store the entry. The value of the
counter is 0. The simplified page table walker utilizes the page
table walker of the processor except that when it encounters a
page fault, SPTW returns 0 as the PTE instead of triggering
a hardware interrupt. This is appropriate because STLT is

5

designed to be fast and acts just as a cache, hence there is
no need to handle a page fault in order to insert an entry.
Therefore, insertSTLT in this case acts just like a hint that is
ignored by the hardware.

Figure 9 elaborates the overview of the implementation of
insertSTLT . The circled number depicts dataflow. The CPU
issues insertSTLT and calculates the effective address of STLT
set to be written according to the integer, taking into account
the base address and size of STLT. The insertion buffer holds
the effective VA and the written address. The CPU then
propagates the VA to SPTW and the SPTW returns either the
PTE or 0, which implies a page fault. If the SPTW returns
0, the execution is complete. Otherwise, the insertion buffer
writes the virtual address and PTE into STLT.

CPU
CRS

insertion buffer

addr, size

simplified page
table walker STLT

insertSTLT integer, va

va
pte or 0

1

2
3

4

va, pte

Fig. 9: Implementation of insertSTLT .

A problem of insertSTLT is concurrent writes when multiple
cores simultaneously issue insertSTLT . Because the insertion
buffer updates 16 bytes, on architectures support atomic write
for 16 bytes3. For those architectures, the insertion buffer
writes atomically the 16 bytes data into STLT. For other
architectures, the programmers should provide the atomicity in
software, for example, wrapping insertSTLT instruction with
a lock or a hardware or software translation.

E. Set-Associative STLT
Direct-mapped STLT has two problems: (1) high conflict

miss rate when the STLT is small, which occurs when two
frequently accessed keys map to the same STLT row; and (2)
low space utilization when STLT large, which is caused by
random distribution of hash function, for example, mapping n
items to an n-row STLT yields in 1

e ≈ 36.8% rows unoccupied
while another e−2

e rows shared by at least two keys4. Set-
associativity solves both problems.

Consider the implementation of set-associativity of STLT
for instructions loadVA and insertSTLT . For loadVA, the
hardware scans the whole set of rows to find a row of which
the sub-integer matches the input integer. The hardware then
loads the row and updates the counter. insertSTLT finds a row
and replaces it with the appropriate input VA and PTE. If it is
not found, the instruction replaces the least frequently accessed
row according to the counter.

3Intel and AMD provide atomic compare-and-switch operations for 16 bytes
aligned data. However, atomicity for other operations for 16 bytes data is
design specific.

4Suppose STLT uses a random hash function, the space utilization problem
is reduced to a balls and bins problem [24].

To scan an n-way associative set, the hardware breaks
loadVA into multiple memory operations, which depends on
the data path width of the processor. For example, Intel
Skylake and later architectures provide up to 512-bit back-
end ports to support AVX-512 instructions [25], while AMD’s
early architecture K8 decodes movaps instruction to two
micro-operations accessing the memory. The counterpart of
AVX-512 for ARM is Neon, for RISC-V is a planned feature,
RISC-V vector. HTA [10] implements similar scan function
but without a counter to support the row replacement.

Both loadVA and insertSTLT modify the STLT. loadVA
updates the counter on hits and insertSTLT always updates a
row. Rather than modifying the whole set, loadVA modifies
4 bits while insertSTLT modifies 16 bytes. Thus, the data
path widths between system table unit and memory vary on
direction, from L1 data cache to the unit or vice-versa.

Because STLT is cache-line aligned, when n ≤ 4, all
rows of a set are in the same cache line, such that even
the architecture without AVX instruction supports (RISC-
V for example) has to break loadVA into multiple memory
operations. The operations tend to incur only one L1 data
cache miss. In contrast, when n > 4, a set spans over more
than one cache line, hence it may cause more than L1 data
cache miss on each STLT lookup.

The counter of a row is 4 bits as elaborated by Figure 6.
To prevent the counter from overflowing fast, we use a
probabilistic increasing strategy. On counter update, let the
value of the counter be x, the hardware generates a random
number less than 2x. If the number is 0, the counter increases
by 1, otherwise, it remains the same. The hardware generates
the random number ahead of time; thus it is almost free.
With the strategy, a counter overflows after 217 updates on
average. The consequence of the overflow is benign, such that
it causes frequent accessed rows to be replaced and may harm
the performance rather than the correctness of the program.

F. Other Implementation Issues
Operating System Support We allocate the STLT in the

kernel space to avoid user-space load and store instructions
from accidentally reading from or writing to it. The OS and
hardware handlers manage STLT with the application provid-
ing input for its creation and resizing, using the following
system calls:

STLTalloc(int n) create an STLT of n rows
STLTresize(int n) resize STLT to n rows
STLTfree() deallocate STLT

Every process can have at most one STLT. STLTalloc al-
locates contiguous memory for STLT and updates register CRS

with the physical address of STLT and the size. STLTresize
adjusts the size of STLT and clears the content of STLT as
the hash function the application uses is unknown to OS. To
provide flexibility on performance tuning, our design allows
the key-value store user to monitor STLT miss ratio and tune
the performance factors, such as space overhead, improvement
in performance, or worst-case query latency.

Performance guarantee. STLT may harm performance if
its hit ratio is very low, which could be caused by the STLT

6

being too small or poor locality presented in key access
pattern. To ensure that the performance of STLT-enhanced
key-value store is at least equal to the original key-value store,
we may use runtime performance monitoring by periodically
turning STLT on and off to determine whether or not STLT
improves the performance, combined with resizing when the
hit rate is too low.

Accelerating beyond hash table. STLT is applicable to
indexing data structures beyond just hash tables, such as B-
tree or black-red tree, as long as those structures have the same
semantic as the hash table, i.e., they take a key as input and
output the record matching the key. The implementation would
be the same, as illustrated by the pseudocode in Figure 4,
where the getValueSlow function uses any of those indexing
data structures. Section IV demonstrates the evaluation for two
implementations of hash table and two other indexing data
structures.

Support for multiple indexing data structures. An appli-
cation can have only one STLT. If the application has multiple
indexing data structures that need to be accelerated, they can
share the STLT. A challenge that needs to be overcome is that
there may be key aliasing between them, i.e., using the same
keys to point to different records.

To remove key aliasing, the programmer can manipulate the
integer before it is used as input to loadVA and insertSTLT .
First, the programmer assigns each indexing data structure a
unique ID. Then, the input integer can be changed by replacing
the last bit(s) of the sub-integer with the ID, which creates a
globally unique integer value, as illustrated in Figure 10. This
new integer can then be used for loadVA and insertSTLT .

0x0123456789A01459

set number
sub-integer

0x0123456789A01451

replace last 4 bits with data structure ID 1

simpleHash(key)

loadva

output

input

Fig. 10: Integer manipulating for shared STLT.

Moving records. The key-value store may move records,
for example, to increase the size needed by a record. Since the
PA of the record changes, the STLT row associated with the
record needs to be invalidated in response to the movement.
To update STLT, the programmer issues insertSTLT once the
movement finishes. To avoid a situation where a thread calling
loadVA while other threads moving the targeted records,
programmers need to ensure that the loadVA and recording
movement happen exclusively, for example, by using locks.

G. Cost of STLT

STLT incurs three types of cost: on-chip storage overhead,
off-chip storage overhead, and software overheads.

a) Hardware Cost: Our hardware support totals less than
1KB of on-chip structures, assuming virtual address of 48 bits

and the page size of 4KB, as detailed in Table I. Register CRS

keeps a 36-bit physical address that is the base address of the
page-aligned STLT plus a 64-bit STLT size. The invalid page
buffer (IPB) has 32 entries and a 6-bit counter. Each entry
of the IPB contains a 36-bit virtual address of a page (i.e.,
virtual page number). The system translation buffer (STB) also
contains 32 entries. Each STB entry contains a 64-bit VA and
a 64-bit PTE. The insertion buffer contains 8 entries, each
containing a 64-bit VA, a 64-bit PTE, and a 44-bit PA. The
total number of bits is minor, less than 1KB. To put it in
perspective, typical L1 data cache size per core is 64KB in
size. The logic overhead is also minor, only one functional unit
(STU) is added, and it is used relatively infrequently compared
to a regular functional unit. The simplified page table walker
also makes use of the existing page table walker, only adding
the enable exception bit.

TABLE I: Hardware space overhead for STLT

Component Cost (bits) Detail
CRS 64 STLT address and size
Invalid page buffer 1,158 32 entries, a 6 bits counter
STB 4,096 32 entries
Insertion buffer 1,376 8 entries

Total: 837 bytes (6,694 bits)

b) Software Cost (Memory Consumption): The off-chip
space overhead is due to STLT data structure in kernel memory
(no hardware structure is involved). The size varies from zero
(for applications that do not need acceleration) to MBs –
hundreds of MBs, depending on the application’s needs. Such
cost is affordable as it is a small fraction of a typical key-value
application working set, incurred only by applications needing
acceleration, and it yields substantial performance improve-
ment. The trade-offs between STLT size and performance are
presented in Section IV.

c) Software Cost (Code Modification): We add 12 lines
of code to apply STLT on a popular key-value store, Redis,
to insert pseudocode shown in Figure 4 to the function that
searches the hash table. For the other four kernel benchmarks
evaluated, we modify only six lines of code, which overrides
the search of the indexing data structures. An optimization may
modify the insertion function as well to ensure a most recently
inserted records also presents in STLT. However, we find
that STLT substantially accelerates indexing data structures
as reported in Section IV, thus we do not modify insertion
functions.

H. Security Impact

In this section, we discuss whether STLT introduces new se-
curity vulnerabilities or makes existing security vulnerabilities
worse. First, although our proposed method stores PA in the
STLT, PA is never exposed to the user-level application. In
addition, the OS allocates STLT in the kernel space, hence
user-space load or store instructions cannot read from or
write to STLT either intentionally or accidentally. Applications
can only access and manage STLT through two instructions,
loadVA and insertSTLT , and a set of system calls. The input

7

and output of the two instructions are integers and virtual
addresses, and hence they do not expose the PA or allow user-
level application to modify the PA.

Second, STLT does not increase vulnerabilities to hash
flooding attacks, even though it allows the use of simple
hash functions. The reason is that upon hash collisions, STLT
would redirect the execution to the default (slow) path. In
the worst case of a flooding attack, STLT could see an
STLT miss on every key-value store request, which adds at
most bounded constant performance overhead. However, with
runtime performance monitoring, which dynamically enables
and disables STLT and compares execution time, the runtime
system would disable STLT in that scenario. STLT hence even
the constant performance overhead could be removed.

IV. EVALUATION

This section evaluates the performance of the proposed
STLT and provides sensitivity studies on the design, including
the size and set associativity of STLT, the choice of hash
tables, and the workload distribution.

A. Methodology

Benchmarks and Dataset. We evaluate STLT on Redis,
a popular key-value store application. In addition, we give
a deeper evaluation of the addressing efficiency of STLT by
applying it to four widely used indexing data structures that
are of production-level implementation. Table II lists them all.

TABLE II: Programs used in evaluation

Program Description
Redis-5.0.7 Production key-value store implemented in C5

unordered map Default hash table in C++ Standard Library
of GCC 7.5.0

dense hash map Hash table by Google in C++6

ordered map Self-balancing red-black tree in C++ Standard
Library of GCC 7.5.0

btree Btree implemented by Google in C++7

Data retrieving efficiency is the focus of the performance
measurements on Redis. Other components of Redis (e.g., data
fetching from network sockets, data validation, conversions
between input/output commands and their internal represen-
tations) are excluded from the measurement. Speeding those
components is not the goal of STLT, but the focus of other
complementary techniques, such as RDMA [18], [26], and
NIC-based techniques [27]. With them, the other operations
of Redis can be significantly shortened (e.g., RDMA reduces
the latency of GET in Redis from 203µs on Ethernet to 15µs).

We use YCSB [12] to generate the workloads for all
benchmarks. The workloads have 10 million keys and 100
million key accesses. The keys are 24 bytes. We generate
nine workloads as all the combinations of three value sizes
and three key access distributions. The value sizes are 64,
128, and 256 bytes. The distributions are zipf, latest,

5https://redis.io/
6https://github.com/sparsehash/sparsehash
7https://code.google.com/archive/p/cpp-btree/wikis/UsageInstructions.wiki

and uniform. The alpha value of the zipf distribution
is 0.99. Prior works uses these distributions on key-value
stores [28], [29], [30], [31], [32]. Workloads with the latest
distribution tend to access the latest inserted keys. Workloads
with uniform distribution accesses every record with an
even probability. The workloads are all GET operations except
for workloads with latest distribution, of which 5% of
operations are SET operations. Without noting otherwise, the
reported results are on the zipf distribution and the value
size is 64 bytes.

Hardware Simulation. We use an interval simulation-based
timing accurate hardware simulator, SniperSim [33], in the
evaluation. It uses Pin [34] as the frontend. We modified
SniperSim to add TLB miss resolution and page table walk.
The data cache caches data as well as page table entries,
as modern architectures do. Table III reports the simulated
architecture.

TABLE III: Simulated architecture

Component Parameter
ISA 64-bit X86, Gainestown architecture
CPU 1 core, 2.66Ghz
L1 data TLB 4-way, 64 entries, 1 cycle
L2 shared TLB 4-way, 1536 entries, 7 cycles
L1 data cache 8-way, 64 entries, 4 cycles
L2 cache 8-way, 256KB, 12 cycles
L3 cache 8-way, 2MB, 40 cycles
Cache line 64 bytes
Memory 45 nanoseconds, 4KB page size

instructions
loadVA 6 cycles + an STLT set load + 4 bits store
insertSTLT 4 cycles + simplified page table walker + 16

bytes store

For all benchmarks, we use 80% of the key accesses to
warm up the cache and STLT, then simulate 128 thousand
key accesses.

To model the latency of new instructions, we divide the
latency into two parts: the latency of memory accesses and
the functional operations other than memory accesses. The
hardware may resolve the memory accesses within cache or
memory; thus the latency varies significantly. We insert load
and store instructions to simulate the latency of memory
accesses. The functional operations have stable latency as
the operations are fixed. We derive the associated latency by
implementing the function in software, measuring the latency
of the software implementation, and using the latency as
the hardware latency. The latency estimate is conservative as
the latencies we assume reflect fully exposed non-overlapped
execution of the instructions. In modern processors, instruction
fetch, decode, and execution are overlapped using instruction-
level parallelism (ILP) techniques.

Comparison Counterparts. We use the default version of
the benchmarks without STLT as the baseline. We in addition
include search lookaside buffer (SLB) [21], a previous work
in the comparison. There are some other recent proposals on
speeding up data retrieving in key-value store [10], [11], but
they are subject to the limitations on record size (no greater
than a cache line). SLB stands for the state of the art that

8

https://redis.io/
https://github.com/sparsehash/sparsehash
https://code.google.com/archive/p/cpp-btree/wikis/UsageInstructions.wiki

supports flexible record sizes as STLT is designed for. SLB
uses a software cache that stores the virtual addresses of
recently accessed records. It does not bypass page table walk.
Therefore, by comparing to SLB, the evaluation shows the
gains brought by STLT by bypassing page table walks.

More specifically, SLB contains two tables, cache table and
log table. Cache table retains the virtual addresses of most
frequently accessed records. It is 7-way associative. The log
table retains the access frequencies of records, four times as
large as the cache table. For fair comparisons, the same hash
function is used for SLB and STLT (on its fast path).

Unless noted otherwise, all evaluations of STLT use 4-
way associativity; Section IV-D2 gives the sensitivity study
on other associativities.

Hash function. Table IV lists all the hash functions used
in the evaluation. Function sipHash is the one used in the
original Redis, and murmurHash is the default hash function
in the original version of the other four programs in Table II.
After STLT is applied, the slow path retains the same hash
function as used in the original benchmark, while its fast path,
by default, uses xxh3 as the hash function. Section IV-D3
shows the performance of STLT when the fast path uses the
other hash functions Table IV lists.

TABLE IV: Hash functions used in the evaluation

Hash Function Description
sipHash default hash function of Redis, python, and rust.

murmurHash default of kernel benchmarks, C++ and Java.
xxh64 64 bits xxh hash fast non-cryptographic hash
djb2 hash function specific for string
xxh3 variation of xxh64

B. Speedup on Redis

Figure 11 reports the speedup of Redis brought by SLB
and STLT on nine workloads. These workloads are of three
distributions and the three workloads of one distribution have
record sizes set to 64B, 128B, and 256B respectively. In these
experiments, the STLT table is allocated 512MB space (in 4-
way associativity), and the cache and log tables in SLB use
10GB space.

SLB STLT SLB STLT SLB STLT

1.15 1.12 1.1

1.43 1.42 1.41

1.05 1.04 1.04
1.27 1.26 1.25 1.23 1.18 1.17

1.5 1.47 1.44

sp
ee

du
p

0X

0.5X

1X

1.5X

zipf distribution
64B 128B 256B

latest distribution
64B 128B 256B

uniform distribution
64B 128B 256B

Fig. 11: Speedups brought by STLT and SLB on Redis on
workloads of different record sizes and distributions

Table V lists the miss rates on STLT tables and SLB
tables. Despite the 20× larger space usage, SLB has only
slightly smaller miss rates. As STLT distinctively tackles
address translations and TLB misses, it overall brings much

TABLE V: STLT and SLB miss rate

Distribution SLB STLT
zipf 1.42% 1.75%

latest 0.30% 0.85%
uniform 7.47% 3.61%

larger reduction of TLB and cache misses and creates greater
speedups as Figure 11 reports.

On average, STLT brings 1.38× speedups. It consistently
outperforms SLB substantially. The higher speedups come
from the larger reduction of TLB misses and cache misses
from STLT as shown by Figure 12. The TLB miss reductions
by STLT are between 27% and 31%, while the reductions are
-2.6% (increases) to 10% by SLB. STLT also shows significant
advantages in reducing data cache misses: 5-12% by STLT
versus -3–3.7% by SLB.

SLB STLT

7.8%

-2.6%

10.2%

28.3% 30.2%
27.4%

TL
B

m
is

s
re

du
ct

io
n

0%

10%

20%

30%

TLB
zipf latest uniform

SLB STLT

2.5%

-1.8%

3.4%

10.3%

4.5%

11%

ca
ch

e
m

is
s

re
du

ct
io

n

0%

5%

10%

cache
zipf latest uniform

Fig. 12: TLB miss and cache miss reduction, value size is
128B.

Record size has little effect on both STLT and SLB.
Experiments with 64B and 256B values show similar TLB or
cache miss reduction with less than 1% difference. Workload
distribution has a larger impact. In general, the benefits of
STLT are more pronounced when the requests have less local-
ity. Among the three distributions, latest has the best data
locality, zipf modest, and uniform the worst. Workloads
of uniform and zipf show much larger speedups than
latest workloads show. It is intuitive because less locality
entails higher numbers of TLB and cache misses and hence a
larger potential room for improvement from using STLT.

C. Speedup on Kernel Benchmarks

On the other four kernel benchmarks, STLT also outper-
forms SLB substantially. Figure 13 shows speedups of two
methods for six workloads (three distributions and two record
sizes: 128B on top, and 256B at the bottom). The results on
64B records have the same trend, omitted in the interest of
space.

For hash table based kernel benchmarks, unordered_map
and dense_hash_map, SLB gains 1.70× speedup on aver-
age while STLT gains 42.3% more, reaching 2.42× speedup.
For the same reason mentioned in the previous subsection,
STLT gives the largest gains (2.6 − 2.9×) on zipf and
uniform distributions, and fewer speedups (1.7×) on the
latest distribution. For tree-based kernel benchmarks, map
and btree, SLB gains 6.46× speedup on average while
STLT gains another 73% more, reaching as much as 11.2×.

9

Z-
SL
B

L-
SL
B U
-S
LB

Z-SLB Z-STLT L-SLB L-STLT U-SLB U-STLT
sp
ee
du
p

0X

1X

2X

3X

unordered_map

Z-
SL
B

L-
SL
B

U
-S
LB

0X

1X

2X

3X

dense_hash_map

Z-
SL
B

L-
SL
B

U
-S
LB

STLT

0X

5X

10X

15X

map

Z-
SL
B

L-
SL
B

U
-S
LB

0X

5X

10X

15X

btree

Z-
SL
B

L-
SL
B U
-S
LB

Z-SLB Z-STLT L-SLB L-STLT U-SLB U-STLT

sp
ee
du
p

0X

1X

2X

3X

unordered_map

Z-
SL
B

L-
SL
B

U
-S
LB

0X

1X

2X

3X

dense_hash_map

Z-
SL
B

L-
SL
B

U
-S
LB

STLT

0X

5X

10X

15X

map

Z-
SL
B

L-
SL
B

U
-S
LB

0X

5X

10X

15X

btree

Fig. 13: Speedups by STLT and SLB on kernel benchmarks
(Z for zipf, L for latest, U for uniform; top: 128B records;
bottom: 256B records)

The much larger speedups than those on hash table based
benchmarks are due to the more irregularity in memory
accesses on trees and hence the larger potential for TLB and
cache miss reductions.

D. Sensitivity Studies

In this part, we report sensitivity studies on STLT.
1) STLT Size: This section studies the relations between

the speedups by STLT and its space usage. We use zipf
workload and 64B records in the measurements.

Figure 14 reports the speedups across a range of space
usage. Across all applications, the speedups increase quickly
as STLT table goes from 16MB to 256MB, and then gradually
flatten out as fewer and fewer TLB misses are left to reduce.
STLT achieves a larger speedup for similar table space over-
heads compared to SLB, consistently across all applications.

STLT
SLB

umap

sp
ee

du
p

1X

2X

3X

Space Usage (MB)

16 32 64 128
256
512
1024
2048
4096

dhash

STLT
SLB

1.0X

1.5X

2.0X

2.5X

Space Usage (MB)

16 32 64 128
256
512
1024
2048
4096

map

STLT
SLB

2X

4X

6X

8X

Space Usage (MB)

16 32 64 128
256
512
1024
2048
4096

btree

STLT
SLB

sp
ee

du
p

2X
4X
6X
8X

10X
12X

Space Usage (MB)

16 32 64 128
256
512
1024
2048
4096

Redis

STLT
SLB

1.0X

1.2X

1.4X

Space Usage (MB)

16 32 64 128
256
512
1024
2048
4096

Fig. 14: Speedup sensitivity to space overhead. The space
usage of SLB for the same number of table entries is 2.5×
larger than STLT due to the table designs and the use of an
additional log table it uses. umap is unordered map and dhash
is dense hash map.

Furthermore, STLT plateaus at a higher speedup level than
SLB. In order to find out the reason, we plot the table miss
rates in Figure 15. The figure shows that as the space usage
grows, the miss rates of the STLT and SLB decrease nearly
identically and become close to zero when the table size
increases to 512MB. From here, we can conclude that STLT’s
higher speedups are not due to lower miss rates, but instead
due to faster address translations, which are not addressed by
SLB.

STLT
SLB

ST
LT

/S
LB

m
is

s
ra

te

0%

20%

40%

Space Usage (MB)
16 32 64 128 256 512 1024 2048 4096

Fig. 15: Miss rates of SLB cache table and STLT
Figure 16 shows the TLB miss reduction of STLT, which

contributes to the speedup. The reduction shows positive corre-
lation with the speedups in both aspects: for single benchmark,
the trend of speedup is mostly the same as the trend of TLB
miss reduction; for all benchmarks, more TLB miss reduction,
more speedup STLT gains on them.

umap dhash map btree Redis
TL

B
m

is
s

re
du

ct
io

n

0%

50%

100%

STLT Table Size (MB)
16 32 64 128 256 512 1024 2048

Fig. 16: Reduction in TLB misses of STLT. All benchmarks
share this miss rate curve as they use the same workload. umap
is unordered map and dhash is dense hash map.

An exception is Redis. Because Redis incurs a large por-
tion of computing on non-indexing data structure operations,
such as parameter validating and record status maintain-
ing, even though STLT reduces more TLB than it does on
dense_hash_map, the speedups by STLT on Redis (1.4×)
is lower than the speedups on dense_hash_map (2.5×).

2) Associativity: This section studies the effect of associa-
tivity of STLT table on four kernel benchmarks. We use zipf
workload distribution and 64B records in the measurements.

Figure 17 shows the performance of STLT on different
associativities. The 4-way associativity is suboptimal in some
cases for various reasons. For an STLT table smaller than
64MB, 1-way associative STLT performs better or close to
4-way associative STLT as scanning a 1-way associative set is
faster than doing that to a 4-way associative set. For example,
in dense_hash_map, 1-way associative STLT outperforms
4-way associative STLT by 4.5% to 11.3% for STLT up to
64MB.

The 8-way associativity shows competitive performance for
median-size STLT (from 128MB to 512MB) as its STLT miss

10

1-way
2-way
4-way
8-way

unordered_map
sp

ee
du

p

1X

2X

3X

STLT Table Size (MB)
16 32 64 128 256 512 10242048

dense_hash_map
1-way
2-way
4-way
8-way

sp
ee

du
p

1X

1.5X

2X

2.5X

STLT Table Size (MB)
16 32 64 128 256 512 10242048

map
1-way
2-way
4-way
8-way

sp
ee

du
p

0X

2X

4X

6X

8X

STLT Table Size (MB)
16 32 64 128 256 512 10242048

btree
1-way
2-way
4-way
8-way

sp
ee

du
p

0X

5X

10X

STLT Table Size (MB)
16 32 64 128 256 512 10242048

Fig. 17: Speedup of 1-, 2-, 4- and 8-way associative STLT

rates are much lower than in other designs. On btree and
map, the miss rates are 43% to 99% less than the miss rates
on 4-way associative STLT. However, it suffers from high
overhead on scanning the set as it scans twice of the number
of rows 4-way associative STLT does and is hence slow on
searching on row replacement. The overhead even reduces the
performance of dense_hash_map by 5% at 16MB STLT.

For large-size STLT, 4-way associative STLT is the optimal
choice as its STLT miss ratio is as low as 8-way associative
STLT and its scanning overhead is much lower. The 1- and
2-way associativities still suffer from high miss rates.

Overall, 4-way associativity gives the stablest speedup: It
either gets the largest or the second-largest speedups for all
benchmarks at all space usage. It is hence the choice in our
current implementation.

3) Hash Function: This section studies how the perfor-
mance of STLT varies when it uses different hash functions
in its fast path. Figure 18(a) illustrates the speedup gained by
STLT on Redis with 64B records and zipf distribution. The
slow path still uses the hash function that the original Redis
uses.

(a) speedup (b) normalized STLT miss rate

1.36

1.43

1.38 1.37

1.43

sp
ee
du
p

1.3X

1.35
X

1.4X

1.45
X

sipH
ashxxh

64 djb2
mur

mur xxh
3

1

1.011
1.014

1.026

1.004

no
rm

al
iz

ed
 S

TL
T

m
is

s
ra

te

1X

1.01X

1.02X

1.03X

sipHash
xxh64 djb2

murmur
xxh3

Fig. 18: Speedup and STLT miss rate vary on hash functions
for Reids

The different hash functions cause up to 19.4% performance
variation. Both the complexity of a hash function and its
capability in avoiding conflicts affect the performance of
STLT. As Figure 18(b) shows, sipHash generates the best
randomly distributed integer and thus has the lowest STLT
miss rates. It however gives the lowest speedups, due to its
high time overhead. Hash function murmursh has the largest
miss rates, but its speedups are even higher than sipHash
gives, due to its simplicity and fast access.

E. Breakdown of Speedup

Three STLT configurations are used to study the benefits
of components. Figure 19(left) shows their improvement in
performance over SLB. STLT-SW is a software-only config-
uration retaining only virtual addresses with the in-memory
table, STLT. Programs access STLT with conventional load
and store instructions. STLT-VA accesses STLT with loadva
and insertSTLT. It still retains only virtual addresses. STLT is
the complete solution that retains page table entries of records.

STLT-SW
STLT

STLT-VA

Im
pr

ov
em

en
t o

ve
r S

LB

-50%
-25%

0%
25%
50%

unordered_map

dense_hash map
btree

redis

VLDP Simple

Sl
ow

do
w

n
ov

er
 b

as
el

in
e

0%

25%

unordered_map

dense_hash map
btree

redis

Fig. 19: Speedup for different STLT configurations over
SLB (left) and slowdown caused by two LLC hardware
prefetchers vs. no STLT and no prefetching (right)

The figure shows that SLB outperforms STLT-SW, espe-
cially on tree data structures. STLT-VA slightly outperforms
SLB as the hardware instructions avoid frequent branch mis-
predictions and enable concurrent operations on STLT set
scanning. STLT inherits all the benefits of STLT-VA while
avoiding (at least one) VA to PA address translations, hence
achieving substantial improvement over SLB.

F. Prefetchers

We evaluated the performance impact of three hardware
prefetchers, including one for TLB prefetching, and two for
data prefetching. This experiment does not use STLT. The
baseline is the performance of benchmarks without hardware
prefetching. The TLB prefetching used is distance prefetch-
ing [35]. It prefetches page table entries into the TLB.
It impacts performance only marginally due to very low
prefetching accuracy (up to 0.06%). The two data prefetching
schemes include one scheme for complex address patterns
(VLDP [36]) and another for stride-based streams (”Simple”
from SniperSim). Both schemes cause performance degrada-
tion of 9.4% and 17.7% on average, respectively, as shown in
Figure 19(right). All the TLB and data prefetching schemes
suffer from low temporal and spatial locality due to the
irregular and input dependent memory access patterns of
indexing data structures. While VLDP decreases the last level
cache miss rate by 7.37% on average (and by 7.15% for redis),
it also incurs 1.54× more main memory accesses on average
(and 3.26× for redis). The excessive memory accesses increase
memory access latency by 140%, which fully negates the gain
from the cache miss reduction. This is consistent with findings
from prior work [37] that reports how prefetching can hurt the
performance of linked data structures.

11

V. DISCUSSION

Huge pages. While using huge pages may reduce TLB
misses, the impact on performance is not trivial due to high
copying latency [38], [39], fragmentation [40], fairness [41],
and compaction [42], especially on NUMA [43] and DRAM-
NVM hybrid memory architectures [38], [44]. The official
document of Redis suggests disabling huge pages as it in-
curs a high latency [45] (similarly with MongoDB [46]
databases [47], [48]).

VI. RELATED WORK

Besides closely related work (SLB [21], HTA [10], and
SDC [11]) already covered, key-value store efficiency has been
studied. DIY address translation [49] allows the programmer
to define their own address translation data structure beyond a
radix tree, e.g. hash table. The translation is at page granularity
to accelerate embedded address translation in virtual environ-
ment. Unlike STLT, DIY neither deals with key-value systems
specifically nor accelerates indexing data structure traversal.

Cooper et al. [12] studied database workload and observed
that most of them follow zipfian’s distribution. They pro-
posed YCSB benchmark [12] with zipfian’s distribution. Other
studies confirm the case for key-value stores in production
environment [13], [14], [15]. Recent studies [16], [17] report
key-value store showing spatial locality. EvenDB [17] reduces
write operations by leveraging spatial locality. pRedis [50]
proposed locality-aware memory allocator. STLT reduces ad-
dress translation overheads, hence it is complementary to prior
works.

By assuming key accesses arriving in batches, Widx [51]
explores parallelism between key accesses by decoupling
key hashing and value loading and making them a pipeline.
ASIC [52], FPGA [53], [54], [55], or processing-in-
memory [56], [57] based solutions offer superb performance
but less flexibility in application-specific optimization, such
as hash functions for specific uses, accesses parallelism, or
memory management. They in addition pose security and
isolation concerns in sharing with cloud users in virtual
machines [58], [59], [60], [61].

VII. CONCLUSION

This paper has presented a new method to accelerate data
retrieving in key-value stores. It distinctively focuses on re-
ducing data addressing overhead by proposing a technique to
streamline address translations. The new solution consists of
an in-memory table, STLT, that caches virtual and physical
addresses of records and two new instructions for accessing
STLT without exposing the physical address to user-space. It
meanwhile opens the opportunity for the use of simpler faster
hash tables in key-value stores. It shortens data addressing
by helping skip many page table walks that are needed in
the current key-value store for translating virtual addresses to
physical addresses. Experiments on various request distribu-
tions and record sizes show that the new technique consistently
brings significant speedups. It accelerates popular production

key-value store, Redis, by up to 1.4×, and four widely used
indexing data structure implementations by up to 13×.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61832006, 61825202,
and 61702202, the National Science Foundation (NSF) under
Grants CNS-1717425, CCF-1703487, CCF-2028850, and the
Department of Energy (DOE) under Grant DE-SC0013700.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or DOE.

REFERENCES

[1] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel, “KVell: the design
and implementation of a fast persistent key-value store,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 447–461.

[2] T. Zhang, J. Wang, X. Cheng, H. Xu, N. Yu, G. Huang, T. Zhang, D. He,
F. Li, W. Cao, Z. Huang, and J. Sun, “FPGA-accelerated compactions
for LSM-based key-value store,” in 18th USENIX Conference on File
and Storage Technologies, 2020, pp. 225–237.

[3] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-R. Choi, “SLM-DB:
single-level key-value store with persistent memory,” in 17th USENIX
Conference on File and Storage Technologies, 2019, pp. 191–205.

[4] Y. Qiu, J. Xie, H. Lv, W. Yin, W.-S. Luk, L. Wang, B. Yu, H. Chen,
X. Ge, Z. Liao, and X. Shi, “Full-kv: Flexible and ultra-low-latency in-
memory key-value store system design on cpu-fpga,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 8, pp. 1828–1444, 2020.

[5] C. Chung, J. Koo, J. Im, and S. Lee, “Lightstore: Software-defined
network-attached key-value drives,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 939–953.

[6] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 1077–1091.

[7] K. Zhang, J. Hu, B. He, and B. Hua, “DIDO: dynamic pipelines for in-
memory key-value stores on coupled CPU-GPU architectures,” in IEEE
33rd International Conference on Data Engineering, 2017, pp. 671–682.

[8] Redis, https://redis.io/.
[9] Memcached, https://memcached.org/.

[10] G. Zhang and D. Sanchez, “Leveraging caches to accelerate hash tables
and memoization,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 440–452.

[11] F. Ni, S. Jiang, H. Jiang, J. Huang, and X. Wu, “SDC: a software
defined cache for efficient data indexing,” in Proceedings of the ACM
International Conference on Supercomputing, 2019, pp. 82–93.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud Computing, 2010, pp. 143–154.

[13] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li, “HotRing:
A hotspot-aware in-memory key-value store,” in 18th USENIX Confer-
ence on File and Storage Technologies, 2020, pp. 239–252.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, 2012,
pp. 53–64.

[15] X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and S. Jiang, “zExpander:
a key-value cache with both high performance and fewer misses,” in
Proceedings of the Eleventh European Conference on Computer Systems,
2016, pp. 1–15.

[16] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in 18th
USENIX Conference on File and Storage Technologies, 2020, pp. 209–
223.

12

https://redis.io/
https://memcached.org/

[17] E. Gilad, E. Bortnikov, A. Braginsky, Y. Gottesman, E. Hillel, I. Keidar,
N. Moscovici, and R. Shahout, “EvenDB: optimizing key-value storage
for spatial locality,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1–16.

[18] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store,” in USENIX Annual Technical
Conference, 2013, pp. 103–114.

[19] W. Tang, Y. Lu, N. Xiao, F. Liu, and Z. Chen, “Accelerating redis with
RDMA over InfiniBand,” in Proceedings of International Conference on
Data Mining and Big Data, 2017, pp. 472–483.

[20] J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input prf,” in
Proceedings of International Conference on Cryptology in India, 2012,
pp. 489–508.

[21] X. Wu, F. Ni, and S. Jiang, “Search lookaside buffer: efficient caching
for index data structures,” in Proceedings of the 2017 Symposium on
Cloud Computing, 2017, pp. 27–39.

[22] xxHash, https://github.com/Cyan4973/xxHash.
[23] Y. Solihin, Fundamentals of Parallel Multicore Architecture. Chapman

& Hall, CRC Computational Science, 2015, ISBN-13 978-1482211184.
[24] L. Johnston, M. Charikar, and G. Valiant, Hash Tables, Universal

Hash Functions, Balls and Bins, http://web.stanford.edu/class/archive/
cs/cs161/cs161.1176/Lectures/CS161Lecture08.pdf.

[25] P. Guide, “Intel R© 64 and IA-32 architectures software developer’s
manual,” Volume 1: Basic Architecture, vol. 1, p. 375, 2019.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proceedings of the 2014 ACM conference on
SIGCOMM, 2014, pp. 295–306.

[27] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A
holistic approach to fast in-memory key-value storage,” in 11th USENIX
Symposium on Networked Systems Design and Implementation, 2014,
pp. 429–444.

[28] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas, “Tucana:
Design and implementation of a fast and efficient scale-up key-value
store,” in USENIX Annual Technical Conference, 2016, pp. 537–550.

[29] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, “ElasticBF: elastic bloom filter
with hotness awareness for boosting read performance in large key-value
stores,” in USENIX Annual Technical Conference, 2019, pp. 739–752.

[30] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacobsen, “Cassandra: An
ssd boosted key-value store,” in IEEE 30th International Conference on
Data Engineering, 2014, pp. 1162–1167.

[31] F. Mei, Q. Cao, H. Jiang, and J. Li, “SifrDB: A unified solution for
write-optimized key-value stores in large datacenter,” in Proceedings of
the ACM Symposium on Cloud Computing, 2018, pp. 477–489.

[32] H. Jin, Z. Li, H. Liu, X. Liao, and Y. Zhang, “Hotspot-aware hybrid
memory management for in-memory key-value stores,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 779–792,
2019.

[33] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization, vol. 11, no. 3, 2014.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

[35] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for TLB
prefetching: an application-driven study,” in Proceedings of the 29th
Annual International Symposium on Computer Architecture, 2002, pp.
195–206.

[36] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 48th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2015, pp. 141–152.

[37] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching
systems,” in IEEE 15th International Symposium on High Performance
Computer Architecture, 2009, pp. 7–17.

[38] H. Liu, R. Liu, X. Liao, H. Jin, B. He, and Y. Zhang, “Object-level
memory allocation and migration in hybrid memory systems,” IEEE
Transactions on Computers, vol. 69, no. 9, pp. 1401–1413, 2020.

[39] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page
migration policy with huge pages in tiered memory systems,” IEEE
Transactions on Computers, 2020.

[40] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating
Systems, 2018, p. 679–692.

[41] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with ingens,” in 12th USENIX
Symposium on Operating Systems Design and Implementation, 2016,
pp. 705–721.

[42] X. Li, L. Liu, S. Yang, L. Peng, and J. Qiu, “Thinking about a new
mechanism for huge page management,” in Proceedings of the 10th
ACM SIGOPS Asia-Pacific Workshop on Systems, 2019, pp. 40–46.

[43] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quéma, “Large pages may be harmful on NUMA systems,” in
USENIX Annual Technical Conference, 2014, pp. 231–242.

[44] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory
management in os for tiered memory systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 10, pp. 2223–2236, 2019.

[45] Redis, https://redis.io/topics/latency.
[46] MongoDB, https://docs.mongodb.com/manual/tutorial/

transparent-huge-pages/.
[47] Cloudera, https://docs.cloudera.com/cloudera-manager/7.0.2/

managing-clusters/topics/cm-disabling-transparent-hugepages.html.
[48] Couchbase, https://docs.couchbase.com/server/current/install/

thp-disable.html.
[49] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual mem-

ory translation,” in ACM/IEEE 44th Annual International Symposium on
Computer Architecture, 2017, pp. 457–468.

[50] C. Pan, Y. Luo, X. Wang, and Z. Wang, “pRedis: Penalty and locality
aware memory allocation in redis,” in Proceedings of the ACM Sympo-
sium on Cloud Computing, 2019, p. 193–205.

[51] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the walkers accelerating index traversals for in-memory
databases,” in 46th Annual IEEE/ACM International Symposium on
Microarchitecture, 2013, pp. 468–479.

[52] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing SoC accelerators for mem-
cached,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, 2013, pp. 36–47.

[53] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve a
billion requests per second throughput on a single key-value store server
platform,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, 2015, pp. 476–488.

[54] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “KV-direct: High-performance in-memory key-value store
with programmable NIC,” in Proceedings of the 26th Symposium on
Operating Systems Principles, 2017, pp. 137–152.

[55] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving
10Gbps line-rate key-value stores with FPGAs,” in 5th USENIX Work-
shop on Hot Topics in Cloud Computing, 2013.

[56] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the
wall: Near-data processing for databases,” in Proceedings of the 11th
International Workshop on Data Management on New Hardware, 2015,
pp. 1–10.

[57] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi,
J. C. Hoe, and F. Franchetti, “3d-stacked memory-side acceleration:
Accelerator and system design,” in Workshop on Near-Data Processing
(WoNDP, Held in conjunction with MICRO-47), 2014.

[58] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualiza-
tion,” in 28th International Conference on Field Programmable Logic
and Applications, 2018, pp. 131–1317.

[59] P. R. Genssler, O. Knodel, and R. G. Spallek, “Securing virtualized
FPGAs for an untrusted cloud,” in Proceedings of the International
Conference on Embedded Systems, Cyber-physical Systems, and Appli-
cations, 2018, pp. 3–9.

[60] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar, “Bitstream
fault injections (BiFI) – automated fault attacks against SRAM-based
FPGAs,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 348–360,
2017.

[61] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in 27th International Confer-
ence on Field Programmable Logic and Applications, 2017, pp. 1–7.

13

https://github.com/Cyan4973/xxHash
http://web.stanford.edu/class/archive/cs/cs161/cs161.1176/Lectures/CS161Lecture08.pdf
http://web.stanford.edu/class/archive/cs/cs161/cs161.1176/Lectures/CS161Lecture08.pdf
https://redis.io/topics/latency
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://docs.cloudera.com/cloudera-manager/7.0.2/managing-clusters/topics/cm-disabling-transparent-hugepages.html
https://docs.cloudera.com/cloudera-manager/7.0.2/managing-clusters/topics/cm-disabling-transparent-hugepages.html
https://docs.couchbase.com/server/current/install/thp-disable.html
https://docs.couchbase.com/server/current/install/thp-disable.html

	Introduction
	Background
	Address-Centric Design for Acceleration
	Overview
	Hash Function
	STLT Design
	Hardware Support for STLT
	loadVA Implementation
	insertSTLT Implementation

	Set-Associative STLT
	Other Implementation Issues
	Cost of STLT
	Security Impact

	Evaluation
	Methodology
	Speedup on Redis
	Speedup on Kernel Benchmarks
	Sensitivity Studies
	STLT Size
	Associativity
	Hash Function

	Breakdown of Speedup
	Prefetchers

	Discussion
	Related Work
	Conclusion
	References

