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Abstract—Log creation, maintenance, and its persist order-
ing are known to be performance bottlenecks for durable trans-
actions on persistent memory. Existing hardware persistent
memory transactions overlook an important opportunity for
improving performance: some persistent data is algorithmically
redundant such that it can be recovered from other data,
removing the need for logging such data. The paper presents
an ISA extension that enables selective logging for hardware
persistent memory transactions for the first time. The ISA
extension features two novel components: fine-grain logging
and lazy persistency. Fine-grain logging allows hardware to
log updates on data in the granularity of words without
lengthening the critical path of data accesses. Lazy persis-
tency allows updated data to remain in the cache after the
transaction commits. Together, the new hardware persistent
memory transaction outperforms the state-of-the-art hardware
counterpart by 1.8× on average.

I. Introduction
Durable transaction is fundamental for computations

involving persistent data objects [1]–[5], such as objects on
CXL-based byte-addressable non-volatile memory expan-
sion [6], NVMDIMM-C [7], and byte-addressable SSD [8],
[9]. Log creation, maintenance, and its persist ordering
are known to be performance bottlenecks for durable
transactions. The large time overhead has remained a
critical issue for the use of persistent data objects in
computations.

Figure 1 illustrates the use of durable transactions.
To insert node B into a double-linked list on persistent
memory, four writes are needed to update the “next”
and “prev” fields of the three involved nodes. If the first
store takes effect immediately on the persistent memory
and then the system crashes after that, the linked list
would be in an inconsistent state. Durable transaction is
a construct to address the problem, which guarantees that
upon a crash or power loss during a durable transaction,
all the modifications to the persistent data objects in the
transaction can be completely canceled, that is, those data
objects can restore to the states they had at the start
of the transaction. So for the double-linked list example,
including the writes into a durable transaction can keep
the linked list in a consistent state upon unexpected crash
or power loss.
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tx_begin
  !"A.next = &B  
  store &B, A.next 
  store &B, C.prev
  store &C, B.next
  store &A, B.prev
tx_end

(c) Insertion Operation

apply any undo log records
iterate the list, for every node i: 
    i!"next!"prev = i

(d) Recovery

Fig. 1. Node insertion in a double-linked list

Supporting a durable transaction requires data logging.
Both undo and redo logging can be used. The former keeps
a copy of the old value of a to-be-modified data item, and
the latter redirects memory writes to a shadow copy of
the data of interest. Maintaining logs incurs a considerable
time overhead. As prior studies show [10], making a copy
of every data to be updated incurs about 3.3X write traffic
and 3X overhead on average (log records contain data and
metadata such as addresses and end marks.) The problem
has prompted some recent efforts to reduce the logging
overhead, which falls into two main classes. The first class
is selective logging [11]–[18], which tries to avoid logging
some data updates if the effects of those updates can be
canceled based on other information. For the linked list
example in Figure 1, if we do not log the writes after
the first write, the linked list can actually still be put
into a consistent state after a crash. The insight is that
the bi-directional linkage in the data structure provides
some redundant information enough for recovery. At a
crash, execution of the code in Figure 1(d) is all needed
to restore the consistency of the list (assuming undo log
is used). Although prior work has shown that selective
logging may reduce logging overhead by 1.13-1.82X [12],
[18]–[20], it has been regarded as an application-specific
approach, requiring programmers to manually design it
and tailor its implementation based on the deep semantics
of the application.

The second class is hardware persistent memory trans-



action. Unlike the scenarios assumed in the selective
logging, this approach does not rely on software-based
logging but uses hardware to more efficiently log data
updates [21]–[25]. It reduces the logging time overhead
through algorithm-independent hardware accelerations.
Although this approach is general, it loses the benefits
of selective logging. All the aforementioned proposals in
hardware persistent transactions automatically log every
data update, causing selective logging to lose applicability,
and the opportunities for avoiding unnecessary logging are
wasted. The loss is substantial, up to 2.1× performance
loss (as Section VI details).

In this paper, we propose the first solution that enables
selective logging in hardware persistent memory transac-
tion. Our approach reconciles the two approaches to get
the best of both worlds.

The basic idea is to introduce a new instruction, storeT,
which makes the hardware skip data logging on such
store instructions. There are, however, a set of challenges
for this idea to work: How to materialize the new store
instruction? How to make the design generally applicable
to transactions of various sizes? How to deal with a cache
line containing both log-free and to-be-logged data while
maximizing the benefits of selective logging? Should the
hardware persist log-free data at the end of a transaction?
As some log-free data are recoverable from other data,
they are not strictly necessary to be persisted. How to take
advantage of this property without harming the soundness
of the execution?

This paper presents our design and how it addresses
all the challenges. The proposed architecture consists of
a full design of the ISA extension for two mainstream
hardware logging techniques, undo and redo logging. It has
several important features: (i) a log coalescing and packing
mechanism to enable efficient logging of persistent memory
accesses at word level; (ii) a lazy mechanism that defers
the persisting of log-free data whenever possible without
sacrificing the recoverability; (iii) other components, such
as cache entry format and cache coherence, for incorpo-
rating some typical hardware transaction optimizations,
including unbounded transactions, decoupled execution
and logging, and so on. They help ensure the compatibility
of the new architecture with existing hardware transaction
primitives. The paper, in addition, examines the implica-
tions of the introduced selective logging mechanism to
programming systems and suggests several opportunities
for compilers.

Our evaluation shows that the proposed architecture is
effective in enabling selective logging on hardware memory
transactions. On six durable data structures benchmarks,
it brings 1.8× speedups over prior hardware persistent
memory transactions and reduces memory write traffic to
persistent memory by 46%.

The introduced architecture support, for the first time,
makes selective logging possible for hardware transactional
memory. It addresses the fundamental roadblock for

practical computations on persistent objects, and offers
an easy way to flexibly combine selective logging and lazy
persistency, opening up new opportunities for optimizing
transactions for persistent memory (Section V).

Overall this work makes four main contributions:
• We propose the first architecture design to enable se-

lective logging in hardware persistent memory trans-
actions.

• We introduce a log coalescing and packing mecha-
nism to enable efficient logging of persistent memory
accesses at the word level.

• We propose a lazy mechanism that defers the per-
sisting of log-free data whenever possible without
sacrificing recoverability.

• We empirically evaluate our design, confirming the
significant benefits of the selective logging capable
hardware persistent memory transaction.

II. Overall Design
This section presents the overall design of selective

logging capable hardware persistent memory transaction.
Although the key design is not bound to a particular
kind of hardware transaction, this section assumes undo
logging transactions to simplify the discussion. Further,
the following discussion assumes that a persistent/durable
transaction is a transaction only for atomic durability,
despite the fact that it can be easily extended for concur-
rency. Section V discusses the relationship with atomic
durable/concurrency transactions.

A key component of the design is a new instruction
storeT. Unlike normal store instruction, the hardware
persistent memory transaction creates no log record for
the data updated by storeT. It is intended to be used
by programmers or compilers in scenarios where in the
recovery of a crash-interrupted transaction, the program
tolerates or has the built-in code to fix inconsistencies
caused by the updates on the log-free data. Log-free data
can be persisted at the transaction commit just as normal
data do, but can also enjoy deferred persisting as detailed
later in this paper.

Figure 2 shows the semantics of storeT. The 1-bit
flag lazy determines whether the hardware shall persist
the updated data at the transaction commit or defer its
persistence. Section III-C explains the use of the field. The
1-bit log-free flag determines whether or not the hardware
disables the semantic of storeT, treating storeT as a store.

storeT value, addr, lazy, log-free 

lazy persistency? log the update?

Fig. 2. Syntax of storeT instruction

Our proposed architecture to materialize storeT has
two important features, fine-grained logging, and lazy
persistency. We name the architecture SLPMT (Selective-
Logging Persistent Memory Transaction). SLPMT adds



minor modifications to a few components of existing CPU
architecture, including adding additional fields for L1 and
L2 cache lines, and extending the cache coherence protocol
and the data path of memory instructions. The new
fields record which part of a cache line is already logged
and needs to be persisted at a transaction commit. The
cache coherence protocol notifies the cache subsystem to
persist the data, detect conflicts, or invalidate cache lines.
We also add new on-core components, including a buffer
for coalescing logs, a set of signatures for recording the
read- and write-set of committed transactions with some
data persistency deferred, and a register for recording
the essential information of transactions, as illustrated in
Figure 3.
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Fig. 3. Overview of the SLPMT architecture. Solid gray components
are new or modified.

When the program updates a persistent datum with a
store instruction, the hardware sets the persist bit of the
L1 cache line to one to indicate that the cache line must
be persisted at the transaction commit. It then checks
the log bit of the L1 cache line to determine whether
to create a log record for the cache line. If the log bit
is unset, indicating the cache line is not yet logged, the
hardware creates a log record for the datum and then
puts the record into the log buffer. The use of the buffer
is to harness the opportunities for coalescing the records
to reduce the write traffic in persisting the log records. It
flushes all log records when the transaction commits; it
flushes a single log record when the associated cache line
is evicted from the private cache into the shared cache.

When an updated cache line is evicted from L1 into
L2, the hardware propagates the log bits and the persist
bit to L2 cache, such that when the subsequent store to
the same datum fetches the cache line into L1 cache, it
can see that the log record associated with the datum has
been created and hence avoids redundant logging.

The hardware executes a storeT instruction as follows.
It sets the persist bit to the value of the lazy field of the
instruction. Unlike store, it does not check or set the log
bit, hence creating no log record for that cache line.

To commit a transaction, the hardware persists all the
records in the log buffer and cache lines in the private
cache whose persist bits are one. It defers the persisting of
other cache lines till any of the data needed for recovering
the cache lines are modified (detailed in Section III-C).
To detect such data modification, the hardware maintains

a per-transaction signature to track the modifications
on the read- and write-set of a transaction, namely the
working set. Before updating any data in the working set,
the hardware must ensure that all the lazy persistency
cache lines created by the associated transaction have
reached persistent memory. Then the hardware reclaims
the signature and proceeds with the data update.

III. Detailed Design
This section gives the details of the design. It starts

with a basic design and then explains the introduced
optimizations.

A. Baseline Design
We first present the baseline design without fine-grained

logging or lazy persistency.
The baseline assumes undo logging. It allows unbounded

transactions. It detects and manages conflicts. As the
management of volatile and persistent data is decoupled,
we focus on the design for persistent data only.

SLPMT augments each L1 and L2 cache line with a
persist bit and a log bit. The storeT instruction sets
the bits according to the operands. SLPMT performs
operations on the cache line according to the bits. The
persist bit indicates whether SLPMT persists the cache
line on transaction commit, namely eager persistency. The
log bit indicates whether SLPMT has created a log record
for the cache line; thus, further updates on the cache
line will not trigger log creation. For example, a storeT
instruction with unset lazy and log-free operands sets the
persist bit of the target cache line but not the log bit, while
store sets both bits. Table I shows the full semantics of
all the forms of store and storeT instructions.

TABLE I
Semantics of store and storeT. SLPMT sets the persist and log bits

according to the combination of the lazy and log-free operands.

Instruction Effects
lazy log-free persist bit log bit

store - - 1 1
storeT 0 0 1 1
storeT 0 1 1 0
storeT 1 1 0 0
storeT 1 0 0 1

When SLPMT sets the log bit, it creates an undo log
record. The effect of store instruction becomes visible
only after SLPMT inserts the record into the buffer. The
log record consists of the data and the address of the
cache line. SLPMT stores the record with the log buffer
next to the L1 cache. The buffer propagates a record to
persistent memory in two cases: (1) when CPU must evict
the associated cache line from L2 to L3 cache, SLPMT
flushes the log record; (2) when the buffer is full, SLPMT
flushes all the eight records. In the latter case, the log
buffer essentially coalesces the records, a feature inspired
by a prior study [24].



An interesting combination is to set a lazy operand but
keep the store logged, indicating that storeT must create a
log record for the cache line, but it is unnecessary to persist
it on transaction commit. It results in the opportunity
for hardware to avoid persisting the log record of the
lazy persistent cache line if the cache line remains in the
cache when the transaction commits. The hardware still
must persist the log record if the cache line is evicted
from the cache during the transaction. On commit, the
hardware simply discards associated log buffer records for
lazily persistent cache lines.

Before an L2 cache line overflows to the L3 cache, if the
persist bit is set, SLPMT notifies the log buffer to persist
the log record. SLPMT clears the persist bit and proceeds
with the eviction if the log record is not in the buffer or
has already reached the persistent memory, .

When a transaction commits, SLPMT drains the log
buffer and then issues cache coherence requests to persist
all cache lines in the private cache whose persist bits are
set. It must maintain the correct order of persisting three
kinds of data: log records, cache lines updated by store,
and cache lines updated by storeT only. We call them
logged cache lines and log-free cache lines. Figure 4 shows
the order in which different kinds of cache lines must reach
persistent memory for undo and redo logging.

log-free lines

logged lines

log records

finish
commit

log-free lines

logged lines

log records

undo logging redo logging

must finish before

start
commit

Fig. 4. The order in which a transaction persists the data and logs

For undo logging, the transaction must persist log
records before persisting logged cache lines. It may persist
log-free cache lines at any time.

For redo logging, to ensure the correct recovery, all
log-free cache lines must reach persistent memory before
logged cache lines. Consider the opposite. The log records
and a logged cache line become persistent, while some log-
free cache lines remain volatile. A system crash corrupts
the log-free lines, jeopardizing the recovery of the transac-
tion. It can neither revoke the updates on the logged cache
lines with redo logs nor recover the log-free cache lines as
the data it depends on, such as the logged cache lines, have
already been updated. The remedy is to ensure that all
log-free cache lines reach persistent memory before logged
lines do. For explanation purposes, we focus the following
discussion on undo logging transactions but note that the
principle of selective logging applies to redo logging as
well.
B. Fine-Grained Logging

To manage log in the granularity of words, SLPMT
expands the log bit to a bitmap and associates each

word with a log bit. Suppose each word is eight-byte
long and each cache line is 64-byte long. A naive design
would require eight log bits per cache line, incurring
36.5KB space overhead per core on representative CPU
architectures1. We next explain how the design in SLPMT
reduces the space cost substantially.

1) Cache Entry: To avoid such significant space over-
head, SLPMT adopts different granularities for the log
bits of different levels of cache. It augments every L1 cache
line with eight log bits. Each log bit is associated with one
eight-byte word. For L2 cache lines, SLPMT introduces a
log bit for every 32-byte word, as shown in Figure 5. It
maintains no log bits for L3 cache lines. This optimized
design incurs only 1.5KB space overhead per core. SLPMT
introduces transaction ID to implement lazy persistency,
which will be presented later in Section III-C.

0x12345

tag datalog bitspersist bit

1 1 1 1 0 0 1 01

0x12345 logged not logged1 01

L1 cache line

L2 cache line
aggregation on eviction

logged
cache eviction

2

2

tx ID

Fig. 5. Formats of L1 and L2 cache entries

Because the log bit granularity in L2 is larger than in
L1, when an L1 cache line is evicted into the L2 cache,
SLPMT sets one L2 log bit as the logical conjunction of
the corresponding four log bits of the L1 cache line, as
shown in Figure 5. When an L2 cache line is fetched into
the L1 cache, SLPMT reverses the operation, replicating
the log bit of the L2 cache line into the corresponding four
log bits of the L1 cache line.

In some cases, the solution could cause duplicated
logging for words and incur some overhead. Consider a
program updating only one word in an L1 cache line.
SLPMT creates a log and sets the log bit accordingly.
Later, the cache line is evicted into the L2 cache; the
conjunction of the log bits is zero; hence the log bit in L2 is
unset. When the program updates the word again, SLPMT
fetches the cache line into the L1 cache. It finds that the
log bit is unset, and would create a log record for the word
again (without overwriting prior logs). Fortunately, such
cases are uncommon as programs often exhibit temporal
or spatial locality, making the reuse of an evicted cache
line uncommon.

An optimization to deduplicate logs is to speculatively
create log records to encourage log bits aggregation.
Consider a program that updates only the first three
words of an L1 cache line. When it is evicted, SLPMT
aggregates the first four log bits, but the conjunction is
zero as the fourth word is not logged yet. Instead, SLPMT
can create a log record for the fourth word despite the fact
that it is clean. It would make the conjunction one. The
optimization does not necessarily incur extra write traffic

1Assuming each core provides 2.25MB L1, L2, and sliced L3 cache
as in mainstream Intel and AMD processors.



as SLPMT coalesces the log records of the four words
through the adaptive log buffer. We will come back to
this point in Section III-B2.

When an L2 cache line with a set persist bit is evicted
into the L3 cache, SLPMT persists the associated log
records and the cache line before the eviction. For a cache
line fetched from the L3 cache into L2, the persist and log
bits of the L2 cache line are all initialized to zero.

It is possible to use the same logging granularity for
the L1 and L2 cache to simplify the design. But it would
incur 3× extra on-chip space overhead. Given that the L2
cache size is growing fast (i.e., 1MB to 4MB for modern
processors), maintaining the same logging granularities in
L2 may cause up to 64KB of space overhead. The proposed
mixed granularities reduce 75% of the space overhead.

2) Log Buffer: SLPMT adopts a four-tier log buffer to
facilitate log coalescing. The idea is inspired by the design
of buddy memory allocation in Linux. The tiers are for
the log records of a word, double words, quadruple words,
and a cache line, respectively. Each record consists of an
address and the logged data. Therefore, the log record for
a single word, double words, and quadruple words are 16,
24, and 40 bytes, respectively, as shown in Figure 6.

24B log records

40B log records

coalesced

[addr: 0x10, value: 12] [addr: 0x18, value: 8]

72B log records

[addr: 0x10, value: 12,8]16B log records
8B 16B

Fig. 6. Tiered log buffer

As SLPMT creates a log record for a word, it starts by
inserting the record into the first tier. On insertion, the
log buffer searches in the tier for a record of the data item
next to the inserted one. If such a record exists, the log
buffer coalesces the two records and inserts the coalesced
record into the next tier. The log buffer repeats coalescing
records on every insertion on every tier except for the tier
of the full cache line.

The log buffer finds available slots in a tier by checking
a register that records the allocation of each slot with
a bit. When the tier is full, without any opportunity
of coalescing records, the log buffer drains the tier by
persisting all the records belonging to that tier.

The buffer performs record coalescing and persisting
asynchronously with the execution of the program. Al-
though it locks the tier during coalescing and persisting,
locking the tiers other than the first tier does not block the
execution of the program, as the hardware can still insert
records into the buffer, even though the coalescing of the
records may be delayed. When the log buffer locks the first
tier, instructions other than store can still execute. When
the first tier is locked, as the effect of store instruction

must be visible only after the insertion operation finishes,
the program stalls on accessing the updated data.

To align with the granularity in which the processor
writes data on persistent memory, SLPMT sets the size
of each tier according to the least common multiple of
the record size and the cache line size. For example, the
size of the tier of double words is lcm(24, 64) = 192 bytes,
which is three cache lines long. Overall, the sizes of the
tiers are two, three, five, and nine cache lines, respectively,
such that each tier retains up to eight records. Prior work
adopts a similar principle of setting the log buffer size [24].

As the commonest kind of operation on the log buffer
is searching for a record with a given specific address on
cache line eviction or record coalescing, SLPMT enables
concurrent search by storing the addresses in the records
with ternary content addressable memory [26], similar to
the design of cache line tags.

When SLPMT drains the buffer, a problem is how to
compact the records from different tiers into cache lines.
The records have different sizes. Therefore, it is challenging
to align them with cache lines. SLPMT organizes the log
buffer as a pad [27], which is a cache operating in variable-
sized objects and interfacing main memory in cache lines.
In the case of a log buffer, the objects are the records.

Before draining the log buffer on the transaction com-
mit, SLPMT scans all the records in the buffer to find
out all records associated with lazy persistent cache lines
(with persist bit unset). It simply discards those records.

C. Lazy Persistency
A fundamental requirement for lazy persistency is that

SLPMT must persist the data at a correct point of time,
such that they are guaranteed to be recoverable with other
related data from a sudden crash. To that end, the timing
of persistence must meet the following condition:

Suppose at a time point P , the value of a lazy
persistent datum A depends on a set of data
S. The datum A must reach persistent memory
before any update to S after P reaches persistent
memory.

Consider the opposite. The system crashes when up-
dates to S have reached the persistent memory while
A remains volatile and gets corrupted. The post-crash
recovery must rebuild A from the updated S, which is
different from its version when A is created. Such a
recovery can be hard or even impossible.

Tracking data dependency precisely, however, is costly.
We hence propose an alternative to enable fast dependency
checking. It is based on an important observation: As a
lazy persistent datum is created within a transaction, all
data it depends on must belong to the working set of
the transaction, including the read- and write-set. Our
proposed solution works as follows. Once a transaction
with lazy persistent data commits, the solution records
the working set of the transaction. When a datum in
the working set is to be updated after the transaction,



the solution blocks the update until it persists all the
associated lazy persistent data. It is worth mentioning that
as the solution detects the conflicts between the working
set and both data updates in or out of transactions, it,
unlike prior asynchronous persistency solution [28], does
not rely on any assumptions about the semantics of the
specific program, making it general. We next elaborate on
the specifics of the solution.

1) ISA Modifications: Programmers enable lazy per-
sistency for log-free data by setting the lazy operand of
storeT, notifying SLPMT to set the persist and log bits of
the updated cache line accordingly as shown by Table I.
SLPMT detects lazy persistent cache lines by checking the
associated persist and log bits.

Store operations on a data item within the lazy per-
sistent cache line effectively cancel the lazy persistency.
As the cache subsystem sends data to persistent memory
in the granularity of the cache line, subsequent store
or storeT (with unset lazy operand) instruction sets the
persist bit, causing SLPMT to persist the cache line at
transaction commits.

2) Cache Entry: SLPMT associates each L1 and L2
cache line with a two-bit transaction ID, indicating which
transaction updates the cache line. The transaction ID is
local to a core. When a transaction begins, the hardware
allocates an ID to the transaction. The transaction register
maintains two values to record the first and the last free
IDs. The two values act as the pointers to a circular buffer.
All IDs between the first and the last free IDs are free.

When SLPMT must persist the lazy persistent cache
lines updated by a transaction, it persists all data owned
by those transactions prior to the must-persist one. When
SLPMT runs out of free transaction ID, it reclaims the
ID of the earliest transaction and then persists all lazy
persistent data. The ID is the one next to the last free
ID. Organizing the free transaction IDs as a circle avoids
the case that the data updated by a transaction at the
beginning of the program remains volatile after too many
transactions.

Similar to committing a transaction, SLPMT persists
the lazy persistent data with a cache coherence request.
The request scans all the private cache to find out and
persist all lazy persistent cache lines. The number of
the coherence request issued is almost the same as other
persistent memory transactions [21], [23], [24]. The reason
is that, similar to other systems, the core issues a coherent
event on each data or log persist operation, and the
memory controller returns a message when the data or
log record reaches the persistent domain.

3) Tracking Conflicts: To track the working set of
a transaction, SLPMT introduces a signature for every
transaction with an assigned ID. The signature records
the addresses of data in the working set of the associated
transaction. It detects conflicts on coherence requests
as the design of unbounded hardware transactions in
prior work [21], [23], [29], [30]. All the signatures share

the same hash functions to save area and energy. On
every coherence request triggered by store and storeT, the
hardware checks the signatures for the address to write on.
If there is a match, SLPMT persists in all lazy persistent
cache lines updated by the transaction associated with
the found signature. On both store and load instructions,
SLPMT checks the transaction ID of the cache line to
access. If the ID is different from the current transaction
ID, indicating that the cache line is lazy persistent data
created by an earlier transaction, it triggers the same
data persistence as mentioned above. Both checks are
cheap. Checks of the signature and of cache line persisting
happen on store operations; they are off the critical path of
program execution. Checks of the transaction ID happen
just on cache line access.

4) Consideration for Persistency: Note that there is
no need to maintain a particular order in which the
lazy persistent data reaches persistent memory as they
can always be recovered from persistent data. Therefore,
complex mechanisms [28] for ordering the data persistency
among threads is not necessary for SLPMT.

Our solution allows a program to enforce the persistency
of the lazily persistent data of a specific transaction.
The program just needs to run a few empty transactions
as the hardware enforces persistence when it reuses a
transaction ID. For example, if a program runs four empty
transactions, all lazily persistent data are made durable.

D. Hardware Overhead
SLPMT incurs 6.1KB space overhead: 3.9KB on the new

fields of L1 and L2 caches, 1.2KB on the log buffer, and
1KB on the signature. The implementation adopts four
2048-bit signatures. All the new storage spaces are volatile.
Overall, the design incurs 0.2% die size of a Westmere
core [31] as reported by CACTI [32]. The design extends
the cache coherence protocol to realize lazy persistency
without changing coherence states.

IV. Implications to Programming Systems
The focus of this work is to create a mechanism that can

enable selective logging on hardware memory transactions.
How to make the best use of this mechanism is up to
programming systems, a systematic exploration of which
is orthogonal to this study. Nonetheless, it is worth
examining the implications of the new mechanism to
programming systems support, which may provide some
insights into adding support of SLPMT into compilers and
programming modules.

A. Use in Customized Algorithms
There are several ways in which the SLPMT mecha-

nism can be used. The first is to be directly used by
programmers. Some intrinsics, APIs, language constructs,
or annotations can be created, with which the programmer
can indicate in a persistent transaction the assignments
where storeT should be used. An alternative way is to



make compilers automatically identify such assignments
and generate storeT instructions for them. The two ap-
proaches can be used together, with the compilers serving
as an optimizer.

Like other software transactions, incorrect annotations
could cause the scheme to misfunction or suffer perfor-
mance loss. If the programmer incorrectly marks a store
as log-free, a crash in the middle of the transaction
undermines the recoverability if the updated data reaches
persistent memory. But such threats do not span across
transaction commits. If the programmer incorrectly marks
a store as lazy persistence, a crash in the transaction does
not hurt recoverability. Instead, a crash after the trans-
action commits and before the data reach the persistent
domain may cause the loss of the up-to-date value of the
data.

B. Opportunities for Compilers
There are lots of opportunities for compilers to help

with the use of storeT. This section presents two common
patterns of persistent memory programming to illustrate
some of the opportunities. In our discussion, we will
assume undo logging transactions. We assume the program
is represented in the static single-assignment (SSA) form,
such that each variable can be assigned only once. The
discussion assumes that the instruction that creates a
variable is also the first instruction that updates the data
at the memory location of the variable. The discussion is
based on the results of a compiler memory dependency
analysis [33] that identifies clobbered load and store
instructions.

a) Pattern 1, for log-free store: A persistent memory
variable can be log-free if it is created by a function before
or within a transaction, such that on post-crash recovery,
re-executing that function can reproduce the variable. The
side-effect of the function must be ignorable or can be
canceled without the knowledge of the variable. Figure 7
shows a common example where a program allocates a
new node when it inserts a record into a list or a tree.
It assumes the recovery uses a garbage collector or a
persistent inspector from PMDK [34], [35] to reclaim the
leaked variable x.

!"insert(node* pos, value_type &v)
tx_begin()
  #$%
  node* x = malloc(sizeof(node))
  …
  x'(prev = pos !"x is log-free
  x'(value = v !"log-free
tx_end()

Fig. 7. Pattern 1 for compiler-assisted selective logging; simplified
from GCC STL’s list implementation [36]

Similarly, if a variable will not be used further, there
is no need to persist it at the transaction commit. For
example, if a transaction intends to free a memory region,

such as removing a node from a tree and deallocating
its memory space, any update in that transaction on the
memory region needs no persistence.

The compiler identifies the pattern based on the use
of certain functions, such as malloc and free, and finds
all the store instructions corresponding to the associated
memory regions. It then replaces the store instructions
with storeT for the log-free purpose.

The recovery is independent of the crashed transaction.
For log-free data, the recovery runs garbage collection
to reclaim memory regions allocated in the interrupted
transactions. The lazily persistent data needs no recovery
as they are meant to discard when the transaction aborts.

b) Pattern 2, for lazy persistence: Besides the un-
needed persistent variables, a persistent variable can be
lazily persistent if the recovery can rebuild both its address
and its value from either other persistent data or log
records.

The compiler identifies candidate lazily persistent vari-
ables by identifying flow-out variables of the transaction. It
is a similar but reverse process of the flow-in variable anal-
ysis done in previous compilers for software transactions
used in idempotent region analysis [19], [20], [37], [38]. For
each of the flow-out variables, the compiler tracks along
the def-use chains of the variable to determine whether
the variable’s value at each of the store instructions in
the transaction depends on only data either recoverable
or already persisted before that instruction and marks
the variable as recoverable. Then, based on the analysis
results, for each store instruction in the transaction,
the compiler checks whether both of its operands are
recoverable. If so, it replaces the store instruction with
the lazy-persistency storeT (not for the log-free purpose,
though).

The compiler generates a recovery for each transaction.
Similar to the re-execution transaction [19] that uses com-
pilers to find all the dependent variables in a transaction
and generate the code for re-executing the transaction
from those variables, our compiler generates the re-
execution process from the variables that the candidate
stores depend on. To find the dependent variables to
initiate the lazily persistent rebuilding, the compiler may
need to record the addresses of the variables or infer which
log records are required for the recovery. We use a log-
free store to record those addresses within a log area other
than the undo log area.

It is worth noting that the lazily persistent variables can
be free from logging when a future transaction updates
them because the variables can be rebuilt to recover
their values prior to the transaction. This optimization,
however, requires the transaction to determine which
variables are lazily persistent through compilers or extra
hardware support, which we leave for the future to explore.



V. Discussion
A. Other New Opportunities

Besides the benefits already mentioned, the introduced
hardware support, SLPMT, offers an easy way to flexibly
combine selective logging and lazy persistence, offering
new opportunities for optimizing persistent transactions.

An example is the optimization of in-place update trans-
actions. Persistent memory offers fast sequential write but
slow random write. Conventional in-place update such
as undo logging transactions [24], [39], [40] suffers from
slow data persistence on the critical path of transaction
commit. SLPMT enables optimizations to eliminate the
random data writes with the following strategy. For every
transactional store operation, the transaction updates
the data with lazily persistent but logged storeT. The
transaction also creates a record of the new value of
the data with eager but log-free storeT instructions. It
appends the record to the end of a sequential array. At
transaction commit, the hardware persists the array but
leaves the updated data in the cache.

If the software crashes during transaction execution,
the lazily updated data either remain in the volatile cache
or have associated undo log records when they overflow.
The recovery can exploit the undo log records to revoke
all updates. If the software crashes after the transaction
commit, the lazily persistent data that remain in the cache
may lose. The recovery uses the sequential records as
a redo log to reapply the updates. Unlike conventional
redo logging [41], [42], this solution requires no address
indirection.

B. Transaction Abort
A program may abort an SLPMT transaction in the

absence of crashes for concurrency control. Similar to
transactional memory [29], [30], the SLPMT transaction
revokes updates on volatile data by issuing a coherence
request that invalidates associated cache lines updated
within the transaction.

Different from transactional memory, SLPMT revokes
the updates on persistent data with the following steps:
(1) clear the log buffer and the signatures; (2) trigger an
interrupt to let a kernel-space system call to apply the
undo log to the persistent data; (3) once the call finishes,
the user-specified recovery revokes the update on log-free
data. There is no need to drain the log buffer, as the cache
lines associated with the log records must still reside in
the private cache. When the cache lines are evicted into
L3, the hardware must persist the log record before the
eviction.

C. Context Switch
SLPMT allows thread context switch through a design

based on prior work [21], [23], [29], [43]. It borrows those
designs to detect and resolve the conflicts when a thread
is switched out. Regarding crash consistency, before a
context switch, the OS kernel drains the log buffer. The

hardware tracks the dependencies for lazy persistent data
even when the context switches. There is no operation
on the signatures and the values for transaction ID
allocation as they are not specific to a context. Note that,
different from other designs, the signatures are not used
for detecting conflicts as they record the working sets of
committed transactions.

D. Relationships between SLPMT and Atomic Transac-
tions

Our discussion has assumed that the transaction of
interest is a durable transaction. There are some prior
works [21], [23] that propose persistent atomic transactions
where a transaction is a unit of both atomicity and
persistency. The support from SLPMT on persistency is
compatible with the atomicity assurance by the tradi-
tional hardware transactional memory. In other words,
the selective logging-capable persistency by SLPMT still
works for persistent atomic transactions with no extra
changes needed. Specifically, to realize atomicity, we
can equip the SLPMT with cache coherence protocol
designs in transactional memory. The coherence protocol
is orthogonal to the modification needed by durability or
selective logging.

E. Battery-Backed Cache
For processors with battery-backed cache, the need for

logging is removed if the working set of a transaction fits
into the cache. However, log is still needed to ensure the
atomicity if any data is evicted into memory, which is
possible as a durable transaction can be large [21], [23].
In those cases, SLPMT still applies.

VI. Evaluation
We evaluate the effectiveness of the proposed tech-

niques, with a focus on the performance benefits brought
by SLPMT and each of its key techniques, and provide
some sensitivity analysis.

A. Workloads
Table II lists the workloads. They consist of four trans-

actional application kernels from STAMP benchmark [44],
plus an exemplary persistent memory key-value store
application from PMDK framework. Whereas specifically
designed data structures can potentially benefit more
from the proposed hardware primitives, we port existing
code according to the rules proposed in Section IV to
present the usability of the hardware primitive and the
effectiveness of the compiler.

Similar to a prior work [19], we evaluate each benchmark
with ycsb-load [46] workload. Each benchmark involves
1,000 insertion operations. Each operation consists of a
persistent memory transaction, an 8-byte key, and a 256-
byte value. We study the sensitivity to the value size.

Log-free and lazy persistency annotations are added
manually into the transactions or automatically with the
compiler by following the principles described in the earlier



TABLE II
Workloads

Benchmark Description
kernels of STAMP benchmark [44]

hashtable chained hash table that resizes when there are
three records in each bucket on average

rbtree red-black self-balancing tree; each node con-
tains a pointer to the parent and an integer
recording the color

heap max heap using an array to store all the nodes
avl AVL self-balancing tree; no parent point in the

node; the limited
exemplary application [45] from PMDK framework
kv key-value store engine that can be configured

with various indexing data structures; the
evaluation uses btree, ctree, and rtree

sections IV. Unless noted otherwise, we evaluate the kernel
benchmark with manually inserted annotations and the
application benchmark with compiler-inserted annotations
due to the large code size of the application. We extend
clang for the compiler support and implement the com-
piler optimizations with LLVM framework [47], [48]. The
compiler detects the data def-use chain dependency with
MemorySSA [33].

B. Hardware Simulation
We implement SLPMT on an X86-like processor. The

design is not bound to a specific architecture. We model
performance with the Gem5-21.2.1 system simulator. Ta-
ble III shows the configuration. For parameters not shown
in the table, we use the default value provided by Gem5.

TABLE III
System configuration

Component Parameter
CPU 64-bit X86 out-of-order pro-

cessor, 2GHz
Cache coherence protocol MESI

L1 data cache 8-way 32KB, 4 cycles
L2 cache 4-way 256KB, 12 cycles
L3 cache 16-way 2MB, 40 cycles

DRAM
DDR4@2400Mhz,
tRCD/tCL/tRP=14/14/14ns
tRAS/tWR=32/15ns

PM
512 bytes write pending
queue, 4ns latency; 150ns
read latency; 500ns write la-
tency

new components
Log buffer 1,216 bytes in total
Signature 4 signatures, each is 256

bytes

We evaluate the correctness and the performance of
the modified MESI cache coherence protocol with Ruby,
a detailed memory subsystem simulator integrated into
Gem5.
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Fig. 8. Speedup over baseline (left); and persistent memory write
traffics reduction over baseline (right). Higher is better.

The evaluation models a persistent memory backed
by Intel’s ADR where data become persistent when it
reaches the write pending queue (WPQ) in the memory
controller. On a failure, the hardware drains the write
pending queue to persistent memory. The size of the
write pending queue is 512 bytes [49]. The evaluation also
studies the performance implication on devices with longer
write latency, such as byte-addressable SSD that aims for
memory expansion [8], [9].

C. Evaluated Schemes
We compare four schemes, including two configurations

of the proposed hardware and two designs of state-of-the-
art in-place hardware undo durable transaction:

• FG: the baseline design with only fine-grain logging
feature; both log-free and lazy persistence are dis-
abled;

• SLPMT: the full design with all features;
• ATOM [24]: a design logging at cache line granularity;

it uses a log buffer to coalesce up to eight cache lines
at a time; it alters the persistence domain to remove
the ordering constraints of logging and store operation
in the persistence domain;

• EDE [40]: a design allows logging at any granularity;
we coalesce the log records as much as possible; the
design removes the global barrier between logging and
store operations by sorting the associated operations
with modified on-core issue queue and write buffer.

We equip FG with log-free or lazy persistence to study
the breakdown of the benefit. FG+LG and FG+LZ refer
to the fine-grain logging hardware with log-free or lazy
persistence, respectively.

D. Kernel Benchmark
The complete design (SLPMT) achieves 1.57×, 1.65×,

and 1.78× speedup on average over the baseline design,
ATOM, and EDE, respectively, as shown in Figure 8
(left). The speedup is mostly brought about by the
35% persistent memory write traffic reduction over the
baseline, as shown in Figure 8 (right).

1) Speedup: Although lazy persistency can also elimi-
nate logging when a logged but lazily persisted variable
remains in the cache before the transaction commits, our



results show that selective logging brings about more
write traffic reduction than lazy persistency does. The
log record about the variable can be discarded if it has
not reached the persistent domain after the transaction
commits. The hardware can virtually avoid the write
traffic incurred by the variable persistence because the
variable can eventually get persisted, even though the
persistence is not synchronous but enforced on cache
overflow or transaction conflict.

Log-free and lazy persistence complement each other to
bring about more gains in performance. On the hashtable
benchmark, lazy persistence and log-free features acceler-
ate the baseline by 17% and 24%, respectively. Together,
they accelerate the benchmark by 52%. The benchmark
particularly benefits from lazy persistence when it moves
data on rehashing. As long as the software moves data
without modifying the original data, it can lazily persist
the moved data. This pattern is particularly common in
incremental generational garbage collectors (GC), multi-
version data structures, and data structure resizing. For
example, an incremental generational GC copies scattered
objects from one memory location to another to decrease
memory fragmentation. When adding persistence to the
GC, the GC can protect each object movement operation
with a durable transaction that lazily persists the new
object [3], as long as the old object is not deleted or
overwritten inside the transaction.

SLPMT benefits from fine-grain logging besides log-free
and lazy persistence. The baseline solution outperforms
ATOM and EDE by 1.05× and 1.13×, respectively,
showing the effectiveness of logging data at word granu-
larity. Although EDE supports fine-grain logging, it loses
opportunities for hardware log coalescing via a log buffer.
Consequently, both EDE and ATOM generate more write
traffic than the baseline solution does, as shown in Figure 8
(right).
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Fig. 9. Speedup (left) and persistent memory write traffics reduction
over the FG baseline (right). Higher is better.

SLPMT is not bound to fine-grain logging. It still gains
1.27× speedup when logging at the cache line granularity,
as shown in Figure 9. It is log-free and lazy persistent
that bring about the speedup, because the hardware incurs
15% more write traffic without the features, as shown in
Figure 9 (right).

2) Sensitivity Analysis to Value Size: SLPMT accel-
erates the baseline by 1.22× on average, even when the

value is as small as 16 bytes, as shown in Figure 10. On
all benchmarks, SLPMT gains on larger values as more
variables can be log-free when the benchmark inserts a
new value into the data structure.
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Fig. 10. Speedup sensitivity on value size

When the value is large, storing and logging new value
incurs the majority of the write traffic. SLPMT eliminates
unnecessary logging. Therefore, its reduced write traffic
changes linearly with the value size, as shown in Figure 11.
However, when the value size is small, updates on the
pointers and counters dominate the write traffic; hence
the write traffic reduction is mostly constant when the
value size grows from 16 bytes to 32 bytes.
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3) Sensitivity Analysis to Write Latency: As CXL
enables various implementations of byte-addressable per-
sistent storage (e.g., memory backed by flash memory),
persistent memory can have 600ns to 2300ns latencies [8],
[9]. By reducing write traffic, SLPMT helps improve
memory endurance as well as speedups, as shown in
Figure 12.
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For the benchmarks other than hashtable, the perfor-
mance gain is largely stable as it is dominated by the write



traffic reduction, which remains the same. Hashtable bene-
fits from lazy persistence, which puts the data persistency
off the critical path of transaction commits. It is hence
more sensitive to the write latency.

4) Effectiveness of Compiler: The compiler-based ap-
plication of storeT achieves similar speedups as the
manual application does, as shown in Figure 13 (left).
In particular, the compiler finds out most of the log-
free variables associated with new data structure entry
creation. It also identifies a few lazily persistent pointer
variables, such as the parent pointer of the rbtree. The
compiler fails to infer deeper semantics of the software
and hence misses the variables recording the colors or
counters of the nodes. That, however, does not affect
the performance as the children pointers needing early
persistence may stay with the color variable in the same
cache line, effectively canceling the lazy persistence. Across
all the kernel benchmarks, the compiler identifies 16 out
of 26 manually annotated variables.
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Fig. 13. Speedup over baseline (left); and compile time without or
with compiler optimization over baseline (right). Higher is better.

The compiler analysis adds marginal time to the com-
pilation time, as shown in Figure 13 (right). Whereas the
compiler devotes 23% more time to compiling btree, the
absolute difference remains less than 0.15 seconds.

E. PMKV
The speedup of SLPMT over the baseline varies on the

backend data structure, as shown in Figure 14 (right).
SLPMT achieves 1.35× to 1.87× speedup over EDE and
1.4× to 2× speedup over ATOM. It reduces the write
traffic of the baseline by 32.6% to 47.6%. The write traffic
reduction, however, is not reflected in the speedup as
SLPMT reduces most write traffic on kv-rtree but achieves
the highest speedup on kv-ctree. Kv-rtree may create more
than one node in one insertion operation. It thus gives
more opportunities for selective logging. The data struc-
ture, however, devotes a substantial computation time,
leaving the benefits from selective logging less significant.

Rtree consists of key movement operation. The move-
ment can be lazily persistent, as discussed in Sec-
tion VI-D1. However, because the evaluation uses the 8-
byte key, the benefit is marginal.

When the value size is 16 bytes, SLPMT achieves
less speedup than it achieves on large values. It still

SLPMT
ATOM

EDE

Sp
ee

du
p 

ov
er

 B
as

el
in

e

0

1

2

kv-btree
kv-rtre

e
kv-ctree

SLPMT
ATOM

EDE

Sp
ee

du
p 

ov
er

 B
as

el
in

e

0

0.5

1.0

1.5

kv-btree
kv-rtre

e
kv-ctree

Fig. 14. Speedup over baseline. The value sizes are 256B (left) and
16B (right). Higher is better.

outperforms EDE and ATOM by 1.35× and 1.58× on
average, respectively. However, most of the speedups are
brought about by fine-grain logging. On top of fine-
grain logging, the log-free and lazy persistence add 26.2%
speedup.

SLPMT achieves a similar performance gain on kv-rtree
despite the changes in value size as the key-value pair
creation contributes less to the write traffic than other
benchmarks. Therefore, the reduction in write traffic of
kv-rtree remains largely the same compared with the case
of large values.

VII. Related Work
To the best of our knowledge, this work is the first pro-

posal that enabled selective logging on hardware persistent
memory transactions.

Existing proposals of hardware persistent memory all
record every updated data with logs. ATOM [24] and
Proteus [22] decouple the data persisting and log persisting
in accelerating transaction committing. Proteus [22] allows
programmers to use two new instructions to manually
create and persist logs, but still assumes that the two
instructions are inserted before every store instruction. It
cannot enforce lazy persistency nor ensure the order in
which log and data get persisted, as shown in Figure 4.
ReDU [25] utilizes log coalescing and packing for redo log
in the granularity of words, reducing the write traffic to
persistent memory. DHTM [21] and UHTM [23] relax the
size limits of transactions, allowing them to store data
with last-level cache or persistent memory.

Both selective logging and lazy persistency are ideas
that have been explored in a body of algorithm-specific
research [11], [12], [50]–[52]. This current work received
inspiration from them but has a different objective in
making the ideas generally applicable by integrating with
hardware persistent memory transactions via architecture
support. We briefly summarize some examples of those
previous works as follows.

For selective logging, a prior work [12] divides the matrix
into tiles, in which the granularity of the proposed solu-
tions detects and fixes data corruptions with tiles stored
on persistent memory surviving the failures. Some other
work [53]–[56] designs failure-tolerant graph algorithms for



distributed work scheduling or data routing. For lazy per-
sistency [12], [14], [57], [58], Alshboul et al. [12] proposes a
lazy persistency matrix multiplication algorithm that lets
data naturally overflow from cache to persistent memory.
It associates each chunk of updated data with a persistent
checksum. On a crash, the algorithm detects whether the
data reaches persistent memory by checking the checksum.
It fixes the inconsistency by recomputing the data with
related data. David et al. [14] proposes a link-and-persist
technique for a set of fundamental algorithms such as
skip list and hash table. The technique allows an updated
pointer to remain volatile until it is accessed in the future.

A prior work on hardware support for fault toler-
ance [18] presents mixed data structures that consist
of volatile pointers and persistent pointers. It rebuilds
the volatile pointers from those persistent pointers. Such
designs incur substantial complexity for running the al-
gorithms on the current build of operating systems as it
needs to align volatile and persistent pointers to cache lines
and incurs obvious space and time overhead. TSOPER [28]
proposes hardware support that decouples the persistence
and the visibility of the updates on data, which essentially
defers the persistency. However, the design needs non-
trivial modifications, including large persistent buffers
tracking the dependency between atomic groups. SLPMT
in this work does not rely on any modification to the
persistency domain.

VIII. Conclusion

This paper presents the first known architecture support
for consolidating persistent memory transactions with
selective logging capability. The new technique makes
selective logging applicable to general applications and,
at the same time, improves the speed of programs on
by 1.8× on average. The benefits significantly reduce
the bottlenecks for durable transactions working with
persistent objects, bringing persistent memory closer to
practical adoptions for general programs. The new archi-
tecture support, meanwhile, gives an easy way to flexibly
combine selective logging and lazy persistency, opening
up new opportunities for the optimizations of persistent
transactions.
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